論文の概要: Reliable Prediction Intervals with Regression Neural Networks
- arxiv url: http://arxiv.org/abs/2312.09606v1
- Date: Fri, 15 Dec 2023 08:39:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 16:36:54.547061
- Title: Reliable Prediction Intervals with Regression Neural Networks
- Title(参考訳): 回帰ニューラルネットワークを用いた信頼性予測区間
- Authors: Harris Papadopoulos and Haris Haralambous
- Abstract要約: 本稿では,従来の回帰ニューラルネットワーク(NN)を拡張して,所要の信頼度を満たす予測間隔で生成する点予測を置き換える手法を提案する。
提案手法は,信頼度を予測に割り当てるための新しい機械学習フレームワークである Conformal Prediction (CP) に従う。
提案手法は,4つのベンチマークデータセットと,電離圏間リンクにおいて重要なパラメータであるトータル・エレクトロン・コンテント(TEC)の予測問題について評価する。
- 参考スコア(独自算出の注目度): 1.569545894307769
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper proposes an extension to conventional regression Neural Networks
(NNs) for replacing the point predictions they produce with prediction
intervals that satisfy a required level of confidence. Our approach follows a
novel machine learning framework, called Conformal Prediction (CP), for
assigning reliable confidence measures to predictions without assuming anything
more than that the data are independent and identically distributed (i.i.d.).
We evaluate the proposed method on four benchmark datasets and on the problem
of predicting Total Electron Content (TEC), which is an important parameter in
trans-ionospheric links; for the latter we use a dataset of more than 60000 TEC
measurements collected over a period of 11 years. Our experimental results show
that the prediction intervals produced by our method are both well-calibrated
and tight enough to be useful in practice.
- Abstract(参考訳): 本稿では,従来の回帰ニューラルネットワーク(NN)を拡張して,所要の信頼度を満たす予測間隔で生成する点予測を置き換える手法を提案する。
我々のアプローチは、データが独立で同一に分散されていることを前提とせずに、信頼できる信頼度を予測に割り当てる、Conformal Prediction (CP)と呼ばれる新しい機械学習フレームワークに従う。
提案手法は,4つのベンチマークデータセットと,超電離圏リンクにおける重要なパラメータであるTotal Electron Content (TEC) の予測問題について評価する。
実験結果から,本手法が生成する予測間隔は良好に校正され,かつ厳密であることがわかった。
関連論文リスト
- Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに基づく強力な機械学習予測モデルである。
GNNには厳密な不確実性見積が欠如しており、エラーのコストが重要な設定での信頼性の高いデプロイメントが制限されている。
本稿では,共形予測(CP)をグラフベースモデルに拡張した共形GNN(CF-GNN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T21:38:23Z) - Uncertainty Quantification in Deep Neural Networks through Statistical
Inference on Latent Space [0.0]
ネットワークに供給されたデータポイントの潜在空間表現を利用して予測精度を評価するアルゴリズムを開発した。
一般的に使われている手法が大半が過信である合成データセットについて述べる。
対照的に,本手法は,不正確な予測を行うようなアウト・オブ・ディストリビューション・データ・ポイントを検出できるため,アウトレーヤの自動検出に役立てることができる。
論文 参考訳(メタデータ) (2023-05-18T09:52:06Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - A general framework for multi-step ahead adaptive conformal
heteroscedastic time series forecasting [0.0]
本稿では,適応アンサンブルバッチ多出力多出力共形量子化回帰(AEnbMIMOCQR)と呼ばれる新しいモデル非依存アルゴリズムを提案する。
これにより、予測者は、固定された特定された誤発見率に対して、分布のない方法で、複数段階の事前予測間隔を生成できる。
本手法は, 整合予測の原理に基づいているが, データの分割は不要であり, データの交換ができない場合でも, ほぼ正確なカバレッジを提供する。
論文 参考訳(メタデータ) (2022-07-28T16:40:26Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
本稿では,モデルが点予測ではなく,その予測に対して不確実な推定を行うような,頑健な予測推論の手順について述べる。
本稿では, トレーニング集団の周囲に$f$-divergence のボールを用いて, 任意のテスト分布に対して適切なカバレッジレベルを与える予測セットを生成する手法を提案する。
私たちの方法論の重要な構成要素は、将来のデータシフトの量を見積り、それに対する堅牢性を構築することです。
論文 参考訳(メタデータ) (2020-08-10T17:09:16Z) - Conformal Prediction Intervals for Neural Networks Using Cross
Validation [0.0]
ニューラルネットワークは、教師付き学習問題に対処するために使用される最も強力な非線形モデルの一つである。
ニューラルネットワークの予測区間を$k$-foldのクロスバリデーションに基づいて構築するための$k$-fold予測区間法を提案する。
論文 参考訳(メタデータ) (2020-06-30T16:23:28Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。