論文の概要: Learned Regularization for Inverse Problems: Insights from a Spectral
Model
- arxiv url: http://arxiv.org/abs/2312.09845v1
- Date: Fri, 15 Dec 2023 14:50:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-18 15:31:13.800336
- Title: Learned Regularization for Inverse Problems: Insights from a Spectral
Model
- Title(参考訳): 逆問題に対する学習正規化:スペクトルモデルからの考察
- Authors: Martin Burger, Samira Kabri
- Abstract要約: 本稿では,逆問題に対する最先端の学習手法に関する理論的に確立された研究結果を提供する。
正規化法とそれらの収束を、基礎となるデータ分布の観点から拡張した定義を与える。
- 参考スコア(独自算出の注目度): 1.7676816383911753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this paper is to provide a theoretically founded investigation of
state-of-the-art learning approaches for inverse problems. We give an extended
definition of regularization methods and their convergence in terms of the
underlying data distributions, which paves the way for future theoretical
studies. Based on a simple spectral learning model previously introduced for
supervised learning, we investigate some key properties of different learning
paradigms for inverse problems, which can be formulated independently of
specific architectures. In particular we investigate the regularization
properties, bias, and critical dependence on training data distributions.
Moreover, our framework allows to highlight and compare the specific behavior
of the different paradigms in the infinite-dimensional limit.
- Abstract(参考訳): 本研究の目的は、逆問題に対する最先端学習アプローチを理論的に確立した研究を提供することである。
本稿では, 正規化法とその収束を基礎となるデータ分布の観点から拡張し, 今後の理論的研究の道を開く。
教師あり学習に導入された単純なスペクトル学習モデルに基づき、特定のアーキテクチャとは独立に定式化できる逆問題に対する異なる学習パラダイムの重要な特性について検討する。
特に,トレーニングデータ分布に対する正規化特性,バイアス,臨界依存性について検討する。
さらに,我々のフレームワークは,無限次元の極限において,異なるパラダイムの特定の挙動を強調・比較することができる。
関連論文リスト
- Geometric Understanding of Discriminability and Transferability for Visual Domain Adaptation [27.326817457760725]
教師なしドメイン適応(UDA)のための不変表現学習は、コンピュータビジョンとパターン認識コミュニティにおいて大きな進歩を遂げている。
近年,移動可能性と識別可能性との実証的な関係が注目されている。
本研究では,幾何学的観点から,伝達可能性と識別可能性の本質を体系的に分析する。
論文 参考訳(メタデータ) (2024-06-24T13:31:08Z) - Learned reconstruction methods for inverse problems: sample error
estimates [0.8702432681310401]
本論文は,学習した再構成手法の一般化特性,特にサンプル誤差解析を行うためのものである。
より一般的な戦略が提案され、その仮定は、逆問題と学習方法の大きなクラスに対して満たされる。
論文 参考訳(メタデータ) (2023-12-21T17:56:19Z) - Applying statistical learning theory to deep learning [21.24637996678039]
これらの講義の目的は、深層学習を理解しようとするときに生じる主な疑問の概要を提供することである。
良心過剰の文脈における暗黙の偏見について論じる。
本稿では, 線形対角線ネットワーク上での勾配降下の暗黙的バイアスを, 様々な回帰タスクに対して詳細に検討する。
論文 参考訳(メタデータ) (2023-11-26T20:00:53Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
本稿では,データとモデル間の相互作用を実験的に解析する新しいツールであるインタラクションテンソルを紹介する。
これらの観測に基づいて,特徴学習のための概念的枠組みを提案する。
この枠組みの下では、一つの仮説に対する期待された精度と一対の仮説に対する合意はどちらも閉形式で導出することができる。
論文 参考訳(メタデータ) (2023-06-07T21:35:26Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
トレーニングセットがわずか数個のデータポイントから構成されるデータ分類の問題を考える。
我々は、AIモデルの特徴空間の幾何学、基礎となるデータ分布の構造、モデルの一般化能力との間の重要な関係を明らかにする。
論文 参考訳(メタデータ) (2022-11-07T14:52:58Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
本稿では, スペクトル分解表現法(SPEDER)を提案する。この手法は, データ収集ポリシーに急激な依存を生じさせることなく, ダイナミックスから状態-作用の抽象化を抽出する。
理論的解析により、オンライン設定とオフライン設定の両方において提案アルゴリズムのサンプル効率が確立される。
実験により、いくつかのベンチマークで現在の最先端アルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-08-19T19:01:30Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
我々はこの現象を探求し、AIモデルの特徴空間の次元性、データ分散の非退化、モデルの一般化能力の間の重要な関係を明らかにする。
本分析の主な推力は、元のデータを高次元および無限次元空間にマッピングする非線形特徴変換が結果のモデル一般化能力に与える影響である。
論文 参考訳(メタデータ) (2022-03-31T10:36:50Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
本稿では,近年のアーキテクチャ設計パターンを深層学習から活用する,学習可能な汎用正規化手法を提案する。
本稿では,古典的画像復元と医用画像再構成問題に対する最先端の性能について述べる。
論文 参考訳(メタデータ) (2020-01-14T19:01:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。