論文の概要: Human Perception-Inspired Grain Segmentation Refinement Using Conditional Random Fields
- arxiv url: http://arxiv.org/abs/2312.09968v2
- Date: Fri, 09 May 2025 15:18:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:09.912656
- Title: Human Perception-Inspired Grain Segmentation Refinement Using Conditional Random Fields
- Title(参考訳): 条件付ランダム場を用いた知覚誘発粒分画微細化
- Authors: Doruk Aksoy, Huolin L. Xin, Timothy J. Rupert, William J. Bowman,
- Abstract要約: 多結晶材料の粒界は、工学材料や新素材のナノスケールのキャラクタリゼーションを加速させるのに役立つ。
この領域の以前のアプローチは、効果的な輪郭閉鎖と連続性のためのカスタムな後処理に依存していた。
本稿では,相互接続された回線網のセグメンテーションマスクに適用可能な高速かつ高忠実なポストプロセッシング手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated detection of grain boundaries in electron microscope images of polycrystalline materials could help accelerate the nanoscale characterization of myriad engineering materials and novel materials under scientific research. Accurate segmentation of interconnected line networks, such as grain boundaries in polycrystalline material microstructures, poses a significant challenge due to the fragmented masks produced by conventional computer vision algorithms, including convolutional neural networks. These algorithms struggle with thin masks, often necessitating post-processing for effective contour closure and continuity. Previous approaches in this domain have typically relied on custom post-processing techniques that are problem-specific and heavily dependent on the quality of the mask obtained from a computer vision algorithm. Addressing this issue, this paper introduces a fast, high-fidelity post-processing technique that is universally applicable to segmentation masks of interconnected line networks. Leveraging domain knowledge about grain boundary connectivity, this method employs conditional random fields and perceptual grouping rules to refine segmentation masks of any image with a discernible grain structure. This approach significantly enhances segmentation mask accuracy, achieving a 79% segment identification accuracy in validation with a U-Net model on electron microscopy images of a polycrystalline oxide. Additionally, a novel grain alignment metric is introduced, showing a 51% improvement in grain alignment. This method not only enables rapid and accurate segmentation but also facilitates an unprecedented level of data analysis, significantly improving the statistical representation of grain boundary networks, making it suitable for a range of disciplines where precise segmentation of interconnected line networks is essential.
- Abstract(参考訳): 多結晶材料の電子顕微鏡像における結晶粒界の自動検出は、科学的な研究の下での無数の工学材料や新素材のナノスケールのキャラクタリゼーションを加速させるのに役立つ。
多結晶材料の微細構造における粒界などの相互接続網の正確なセグメンテーションは、畳み込みニューラルネットワークを含む従来のコンピュータビジョンアルゴリズムによって生成される断片化マスクにより、大きな課題となる。
これらのアルゴリズムは薄いマスクと競合し、しばしば効果的な輪郭閉鎖と連続性のために後処理を必要とする。
この領域の以前のアプローチは、通常、問題固有の、コンピュータビジョンアルゴリズムから得られるマスクの品質に大きく依存するカスタムな後処理技術に依存していた。
本稿では,配線網のセグメンテーションマスクに適用可能な高速かつ高忠実なポストプロセッシング手法を提案する。
粒界接続に関するドメイン知識を活用し、条件付きランダムフィールドと知覚的グルーピングルールを用いて、識別可能な粒構造を持つ任意の画像のセグメンテーションマスクを洗練させる。
このアプローチはセグメンテーションマスクの精度を大幅に向上させ、多結晶酸化物の電子顕微鏡画像上でのU-Netモデルによる検証で79%のセグメンテーション識別精度を達成する。
さらに,新しい粒度アライメント指標を導入し,粒度アライメントが51%向上した。
本手法は, 高速かつ高精度なセグメンテーションを実現するだけでなく, 前例のないレベルのデータ解析を可能にし, 粒界ネットワークの統計的表現を著しく改善し, 相互接続された回線網の正確なセグメンテーションが不可欠となる分野に適している。
関連論文リスト
- MaskAttn-UNet: A Mask Attention-Driven Framework for Universal Low-Resolution Image Segmentation [5.130440339897479]
MaskAttn-UNetはマスクアテンション機構を通じて従来のU-Netアーキテクチャを強化する新しいセグメンテーションフレームワークである。
本モデルでは,無関係な背景を抑えながら重要な領域を選択的に強調し,乱れや複雑なシーンのセグメンテーション精度を向上させる。
以上の結果から,MaskAttn-UNetは変圧器モデルよりも計算コストが大幅に低く,最先端の手法に匹敵する精度を達成できた。
論文 参考訳(メタデータ) (2025-03-11T22:43:26Z) - LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
本稿では, 乱れ場面におけるロボットグルーピングのためのアモーダルセグメンテーションを探求する枠組みを提案する。
線形融合注意誘導畳み込みネットワーク(LAC-Net)を提案する。
その結果,本手法が最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-08-06T14:50:48Z) - Masked Gamma-SSL: Learning Uncertainty Estimation via Masked Image
Modeling [19.000718685399935]
本研究では,単一の前方通過で高品質な不確実性推定を行うセマンティックセグメンテーションネットワークを提案する。
我々は、Masked Image Modeling (MIM) アプローチにより、基礎モデルと非ラベルデータセットの一般的な表現を利用する。
安全クリティカルなアプリケーションで使用されるニューラルネットワークでは、トレーニングデータのバイアスがエラーにつながる可能性がある。
論文 参考訳(メタデータ) (2024-02-27T15:49:54Z) - BLADE: Box-Level Supervised Amodal Segmentation through Directed
Expansion [10.57956193654977]
Boxレベルの教師付きアモーダルセグメンテーションは、この課題に対処する。
可視マスクから対応するアモーダルマスクへの指向性拡張アプローチを導入することで,新しい解を提案する。
このアプローチでは、オーバーラップする領域 – 異なるインスタンスが交わる領域 – に基づいた、ハイブリッドなエンドツーエンドネットワークが関係しています。
論文 参考訳(メタデータ) (2024-01-03T09:37:03Z) - Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
ポイントベースのインタラクティブなイメージセグメンテーションは、セマンティックセグメンテーションや画像編集といったアプリケーションにおけるマスクアノテーションの負担を軽減することができる。
本稿では,ユーザ入力の少ないセグメンテーション品質を向上する新しい手法である可変無感・ターゲット保存マスクリファインメントを提案する。
GrabCut、バークレー、SBD、DAVISデータセットの実験は、インタラクティブな画像セグメンテーションにおける我々の手法の最先端性能を実証している。
論文 参考訳(メタデータ) (2023-12-22T02:31:31Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Masking Improves Contrastive Self-Supervised Learning for ConvNets, and Saliency Tells You Where [63.61248884015162]
我々は、畳み込みニューラルネットワークのためのコントラスト学習フレームワークにマスキング操作を組み込むことの負担を軽減することを目的としている。
マスクされた領域が、前景と背景の間に均等に分散されていることを考慮し、塩分濃度の制約を明示的に考慮することを提案する。
論文 参考訳(メタデータ) (2023-09-22T09:58:38Z) - Instance Segmentation of Dislocations in TEM Images [0.0]
材料科学において, 転位の位置と移動に関する知識は, 優れた特性を持つ新素材を作成する上で重要である。
本研究では,Mask R-CNNやYOLOv8など,最先端のインスタンスセグメンテーション手法を定量的に比較する。
インスタンスセグメンテーションの結果としての転位マスクは数学的直線に変換され、転位長と幾何の定量的解析が可能となる。
論文 参考訳(メタデータ) (2023-09-07T06:17:31Z) - Automated Grain Boundary (GB) Segmentation and Microstructural Analysis
in 347H Stainless Steel Using Deep Learning and Multimodal Microscopy [2.0445155106382797]
オーステナイト347Hステンレス鋼は、極端な運転条件に要求される優れた機械的特性と耐食性を提供する。
CNNベースのディープラーニングモデルは、材料マイクログラフから機能を自動で検出する強力な技術である。
走査型電子顕微鏡(SEM)による347Hステンレス鋼のトレーニングデータと電子後方散乱(EBSD)マイクログラフを,粒界検出のためのピクセルワイドラベルとして組み合わせた。
論文 参考訳(メタデータ) (2023-05-12T22:49:36Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - Adversarial contamination of networks in the setting of vertex
nomination: a new trimming method [5.915837770869619]
スペクトルグラフの埋め込みは、アルゴリズムの性能とフレキシブルな設定を提供する。
ブロック構造汚染とホワイトノイズ汚染の両方に対処できるモデル空間で動作する新しいトリミング法を提案する。
このモデルトリミングは理論解析に適しており、多くのシミュレーションにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2022-08-20T15:32:04Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
セグメンテーションに基づくシーンテキスト検出手法はシーンテキスト検出分野において大きな注目を集めている。
本稿では,二項化処理をセグメンテーションネットワークに統合する分散二項化(DB)モジュールを提案する。
アダプティブ・スケール・フュージョン (ASF) モジュールは, 異なるスケールの特徴を適応的に融合させることにより, スケールのロバスト性を向上させる。
論文 参考訳(メタデータ) (2022-02-21T15:30:14Z) - Image Inpainting with Edge-guided Learnable Bidirectional Attention Maps [85.67745220834718]
不規則な穴の画像インペインティングを改善するためのエッジガイド学習可能な双方向注意マップ(Edge-LBAM)を紹介します。
当社のEdge-LBAMメソッドには、予測エッジによる構造認識マスク更新を含むデュアルプロシージャが含まれています。
広範な実験により,エッジlbamはコヒーレントな画像構造を生成し,色差やぼやけを防止できることがわかった。
論文 参考訳(メタデータ) (2021-04-25T07:25:16Z) - Detecting micro fractures with X-ray computed tomography [4.855026133182103]
XRCTを用いたカララ大理石のフラクチャーネットワークの可視化に成功したデータ集合について述べる。
従来の3手法と機械学習に基づく2手法を評価した。
2次元U-netモデルの出力は、機械学習に基づくセグメンテーション手法の1つである。
論文 参考訳(メタデータ) (2021-03-23T20:20:24Z) - The Devil is in the Boundary: Exploiting Boundary Representation for
Basis-based Instance Segmentation [85.153426159438]
本研究では,既存のグローバルマスクベースの手法を補完するグローバル境界表現を学習するために,Basisベースのインスタンス(B2Inst)を提案する。
私たちのB2Instは一貫した改善をもたらし、シーン内のインスタンス境界を正確に解析します。
論文 参考訳(メタデータ) (2020-11-26T11:26:06Z) - Improving the Segmentation of Scanning Probe Microscope Images using
Convolutional Neural Networks [0.9236074230806579]
有機溶媒からの沈着によりシリコン表面に生成した金ナノ粒子の2次元集合体像の分画プロトコルを開発した。
溶媒の蒸発は粒子の極端に平衡な自己組織化を駆動し、様々なナノパターンや微細構造パターンを生み出す。
U-Net畳み込みニューラルネットワークを用いたセグメンテーション戦略が従来の自動アプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-08-27T20:49:59Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
大腸内視鏡画像の高精度なポリープ分割のための並列リバースアテンションネットワーク(PraNet)を提案する。
並列部分復号器(PPD)を用いて,まず高層層に特徴を集約する。
さらに,エリアとバウンダリの関連性を確立するために,リバースアテンション(RA)モジュールを用いて境界キューをマイニングする。
論文 参考訳(メタデータ) (2020-06-13T08:13:43Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
本稿では,セグメント化された平面マスクを画像に検出されたエッジと整列するための後処理アルゴリズムを提案する。
これにより、立方体形状の物体に制限を加えながら、最先端のアプローチの精度を高めることができます。
論文 参考訳(メタデータ) (2020-03-28T18:51:43Z) - Boundary Learning by Using Weighted Propagation in Convolution Network [11.3458350422287]
ネットワークに空間的整合性を導入し、生の顕微鏡画像の欠陥を除去する。
各粒の画素ごとの適応的境界重みをカスタマイズし、粒の幾何学的および位相的特性をネットワークに保持する。
境界検出タスクでは、エラー率を7%削減し、最先端の手法を大きなマージンで上回る。
論文 参考訳(メタデータ) (2019-05-22T16:23:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。