Symplectic Autoencoders for Model Reduction of Hamiltonian Systems
- URL: http://arxiv.org/abs/2312.10004v1
- Date: Fri, 15 Dec 2023 18:20:25 GMT
- Title: Symplectic Autoencoders for Model Reduction of Hamiltonian Systems
- Authors: Benedikt Brantner, Michael Kraus
- Abstract summary: It is crucial to preserve the symplectic structure associated with the system in order to ensure long-term numerical stability.
We propose a new neural network architecture in the spirit of autoencoders, which are established tools for dimension reduction.
In order to train the network, a non-standard gradient descent approach is applied.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many applications, such as optimization, uncertainty quantification and
inverse problems, require repeatedly performing simulations of
large-dimensional physical systems for different choices of parameters. This
can be prohibitively expensive.
In order to save computational cost, one can construct surrogate models by
expressing the system in a low-dimensional basis, obtained from training data.
This is referred to as model reduction.
Past investigations have shown that, when performing model reduction of
Hamiltonian systems, it is crucial to preserve the symplectic structure
associated with the system in order to ensure long-term numerical stability.
Up to this point structure-preserving reductions have largely been limited to
linear transformations. We propose a new neural network architecture in the
spirit of autoencoders, which are established tools for dimension reduction and
feature extraction in data science, to obtain more general mappings.
In order to train the network, a non-standard gradient descent approach is
applied that leverages the differential-geometric structure emerging from the
network design.
The new architecture is shown to significantly outperform existing designs in
accuracy.
Related papers
- Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical
Systems using Constrained Autoencoders [0.0]
We introduce a class of nonlinear projections described by constrained autoencoder neural networks in which both the manifold and the projection fibers are learned from data.
Our architecture uses invertible activation functions and biorthogonal weight matrices to ensure that the encoder is a left inverse of the decoder.
We also introduce new dynamics-aware cost functions that promote learning of oblique projection fibers that account for fast dynamics and nonnormality.
arXiv Detail & Related papers (2023-07-28T04:01:48Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Conditional deep generative models as surrogates for spatial field
solution reconstruction with quantified uncertainty in Structural Health
Monitoring applications [0.0]
In problems related to Structural Health Monitoring (SHM), models capable of both handling high-dimensional data and quantifying uncertainty are required.
We propose a conditional deep generative model as a surrogate aimed at such applications and high-dimensional structural simulations in general.
The model is able to achieve high reconstruction accuracy compared to the reference Finite Element (FE) solutions, while at the same time successfully encoding the load uncertainty.
arXiv Detail & Related papers (2023-02-14T20:13:24Z) - Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction [0.0]
Non-traditional approaches such as surrogate modeling using data-driven model order reduction are used to make high-fidelity models more widely available anyway.
We demonstrate the benefits of the surrogate modeling approach on a complex finite element model of a human upper-arm.
arXiv Detail & Related papers (2023-02-13T17:14:34Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Stabilizing Equilibrium Models by Jacobian Regularization [151.78151873928027]
Deep equilibrium networks (DEQs) are a new class of models that eschews traditional depth in favor of finding the fixed point of a single nonlinear layer.
We propose a regularization scheme for DEQ models that explicitly regularizes the Jacobian of the fixed-point update equations to stabilize the learning of equilibrium models.
We show that this regularization adds only minimal computational cost, significantly stabilizes the fixed-point convergence in both forward and backward passes, and scales well to high-dimensional, realistic domains.
arXiv Detail & Related papers (2021-06-28T00:14:11Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Neural Closure Models for Dynamical Systems [35.000303827255024]
We develop a novel methodology to learn non-Markovian closure parameterizations for low-fidelity models.
New "neural closure models" augment low-fidelity models with neural delay differential equations (nDDEs)
We show that using non-Markovian over Markovian closures improves long-term accuracy and requires smaller networks.
arXiv Detail & Related papers (2020-12-27T05:55:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.