Conditional deep generative models as surrogates for spatial field
solution reconstruction with quantified uncertainty in Structural Health
Monitoring applications
- URL: http://arxiv.org/abs/2302.08329v1
- Date: Tue, 14 Feb 2023 20:13:24 GMT
- Title: Conditional deep generative models as surrogates for spatial field
solution reconstruction with quantified uncertainty in Structural Health
Monitoring applications
- Authors: Nicholas E. Silionis and Theodora Liangou and Konstantinos N.
Anyfantis
- Abstract summary: In problems related to Structural Health Monitoring (SHM), models capable of both handling high-dimensional data and quantifying uncertainty are required.
We propose a conditional deep generative model as a surrogate aimed at such applications and high-dimensional structural simulations in general.
The model is able to achieve high reconstruction accuracy compared to the reference Finite Element (FE) solutions, while at the same time successfully encoding the load uncertainty.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, increasingly complex computational models are being built to
describe physical systems which has led to increased use of surrogate models to
reduce computational cost. In problems related to Structural Health Monitoring
(SHM), models capable of both handling high-dimensional data and quantifying
uncertainty are required. In this work, our goal is to propose a conditional
deep generative model as a surrogate aimed at such applications and
high-dimensional stochastic structural simulations in general. To that end, a
conditional variational autoencoder (CVAE) utilizing convolutional neural
networks (CNNs) is employed to obtain reconstructions of spatially ordered
structural response quantities for structural elements that are subjected to
stochastic loading. Two numerical examples, inspired by potential SHM
applications, are utilized to demonstrate the performance of the surrogate. The
model is able to achieve high reconstruction accuracy compared to the reference
Finite Element (FE) solutions, while at the same time successfully encoding the
load uncertainty.
Related papers
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Shallow Recurrent Decoder for Reduced Order Modeling of Plasma Dynamics [2.9320342785886973]
We develop a model reduction scheme based upon a em Shallow REcurrent Decoder (SH) architecture.
Based upon the theory of separation of variables, the SHRED architecture is capable of reconstructing full-temporal fields with as little as three point sensors.
arXiv Detail & Related papers (2024-05-20T11:21:23Z) - Symplectic Autoencoders for Model Reduction of Hamiltonian Systems [0.0]
It is crucial to preserve the symplectic structure associated with the system in order to ensure long-term numerical stability.
We propose a new neural network architecture in the spirit of autoencoders, which are established tools for dimension reduction.
In order to train the network, a non-standard gradient descent approach is applied.
arXiv Detail & Related papers (2023-12-15T18:20:25Z) - Recurrent neural networks and transfer learning for elasto-plasticity in
woven composites [0.0]
This article presents Recurrent Neural Network (RNN) models as a surrogate for computationally intensive meso-scale simulation of woven composites.
A mean-field model generates a comprehensive data set representing elasto-plastic behavior.
In simulations, arbitrary six-dimensional strain histories are used to predict stresses under random walking as the source task and cyclic loading conditions as the target task.
arXiv Detail & Related papers (2023-11-22T14:47:54Z) - Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction [0.0]
Non-traditional approaches such as surrogate modeling using data-driven model order reduction are used to make high-fidelity models more widely available anyway.
We demonstrate the benefits of the surrogate modeling approach on a complex finite element model of a human upper-arm.
arXiv Detail & Related papers (2023-02-13T17:14:34Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.