Interpretable Knowledge Tracing via Response Influence-based Counterfactual Reasoning
- URL: http://arxiv.org/abs/2312.10045v2
- Date: Fri, 31 May 2024 14:19:03 GMT
- Title: Interpretable Knowledge Tracing via Response Influence-based Counterfactual Reasoning
- Authors: Jiajun Cui, Minghe Yu, Bo Jiang, Aimin Zhou, Jianyong Wang, Wei Zhang,
- Abstract summary: Knowledge tracing plays a crucial role in computer-aided education and intelligent tutoring systems.
Current approaches have explored psychological influences to achieve more explainable predictions.
We propose RCKT, a novel response influence-based counterfactual knowledge tracing framework.
- Score: 10.80973695116047
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Knowledge tracing (KT) plays a crucial role in computer-aided education and intelligent tutoring systems, aiming to assess students' knowledge proficiency by predicting their future performance on new questions based on their past response records. While existing deep learning knowledge tracing (DLKT) methods have significantly improved prediction accuracy and achieved state-of-the-art results, they often suffer from a lack of interpretability. To address this limitation, current approaches have explored incorporating psychological influences to achieve more explainable predictions, but they tend to overlook the potential influences of historical responses. In fact, understanding how models make predictions based on response influences can enhance the transparency and trustworthiness of the knowledge tracing process, presenting an opportunity for a new paradigm of interpretable KT. However, measuring unobservable response influences is challenging. In this paper, we resort to counterfactual reasoning that intervenes in each response to answer \textit{what if a student had answered a question incorrectly that he/she actually answered correctly, and vice versa}. Based on this, we propose RCKT, a novel response influence-based counterfactual knowledge tracing framework. RCKT generates response influences by comparing prediction outcomes from factual sequences and constructed counterfactual sequences after interventions. Additionally, we introduce maximization and inference techniques to leverage accumulated influences from different past responses, further improving the model's performance and credibility. Extensive experimental results demonstrate that our RCKT method outperforms state-of-the-art knowledge tracing methods on four datasets against six baselines, and provides credible interpretations of response influences.
Related papers
- Enhancing Knowledge Tracing with Concept Map and Response Disentanglement [5.201585012263761]
We propose the Concept map-driven Response disentanglement method for enhancing Knowledge Tracing (CRKT) model.
CRKT benefits KT by directly leveraging answer choices--beyond merely identifying correct or incorrect answers--to distinguish responses with different incorrect choices.
We further introduce the novel use of unchosen responses by employing disentangled representations to get insights from options not selected by students.
arXiv Detail & Related papers (2024-08-23T11:25:56Z) - Explainable Few-shot Knowledge Tracing [48.877979333221326]
We propose a cognition-guided framework that can track the student knowledge from a few student records while providing natural language explanations.
Experimental results from three widely used datasets show that LLMs can perform comparable or superior to competitive deep knowledge tracing methods.
arXiv Detail & Related papers (2024-05-23T10:07:21Z) - A Closer Look at the Limitations of Instruction Tuning [52.587607091917214]
We show that Instruction Tuning (IT) fails to enhance knowledge or skills in large language models (LLMs)
We also show that popular methods to improve IT do not lead to performance improvements over a simple LoRA fine-tuned model.
Our findings reveal that responses generated solely from pre-trained knowledge consistently outperform responses by models that learn any form of new knowledge from IT on open-source datasets.
arXiv Detail & Related papers (2024-02-03T04:45:25Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Augmenting Interpretable Knowledge Tracing by Ability Attribute and
Attention Mechanism [0.0]
Knowledge tracing aims to model students' past answer sequences to track the change in their knowledge acquisition during exercise activities.
Most existing approaches ignore the fact that students' abilities are constantly changing or vary between individuals.
We propose a novel model based on ability attributes and attention mechanism.
arXiv Detail & Related papers (2023-02-04T11:19:55Z) - Evaluation of Induced Expert Knowledge in Causal Structure Learning by
NOTEARS [1.5469452301122175]
We study the impact of expert knowledge on causal relations in the form of additional constraints used in the formulation of the nonparametric NOTEARS model.
We found that (i) knowledge that corrects the mistakes of the NOTEARS model can lead to statistically significant improvements, (ii) constraints on active edges have a larger positive impact on causal discovery than inactive edges, and surprisingly, (iii) the induced knowledge does not correct on average more incorrect active and/or inactive edges than expected.
arXiv Detail & Related papers (2023-01-04T20:39:39Z) - Differentiating Student Feedbacks for Knowledge Tracing [5.176190855174938]
We propose DR4KT for Knowledge Tracing, which reweights the contribution of different responses according to their discrimination in training.
For retaining high prediction accuracy on low discriminative responses after reweighting, DR4KT also introduces a discrimination-aware score fusion technique.
arXiv Detail & Related papers (2022-12-16T13:55:07Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
We introduce the Disentangled Counterfactual Recurrent Network (DCRN), a sequence-to-sequence architecture that estimates treatment outcomes over time.
With an architecture that is completely inspired by the causal structure of treatment influence over time, we advance forecast accuracy and disease understanding.
We demonstrate that DCRN outperforms current state-of-the-art methods in forecasting treatment responses, on both real and simulated data.
arXiv Detail & Related papers (2021-12-07T16:40:28Z) - Context-Aware Attentive Knowledge Tracing [21.397976659857793]
We propose attentive knowledge tracing, which couples flexible attention-based neural network models with a series of novel, interpretable model components.
AKT uses a novel monotonic attention mechanism that relates a learner's future responses to assessment questions to their past responses.
We show that AKT outperforms existing KT methods (by up to $6%$ in AUC in some cases) on predicting future learner responses.
arXiv Detail & Related papers (2020-07-24T02:45:43Z) - Learning "What-if" Explanations for Sequential Decision-Making [92.8311073739295]
Building interpretable parameterizations of real-world decision-making on the basis of demonstrated behavior is essential.
We propose learning explanations of expert decisions by modeling their reward function in terms of preferences with respect to "what if" outcomes.
We highlight the effectiveness of our batch, counterfactual inverse reinforcement learning approach in recovering accurate and interpretable descriptions of behavior.
arXiv Detail & Related papers (2020-07-02T14:24:17Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.