論文の概要: Automatic nonlinear MPC approximation with closed-loop guarantees
- arxiv url: http://arxiv.org/abs/2312.10199v2
- Date: Thu, 11 Apr 2024 16:22:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 18:57:05.744721
- Title: Automatic nonlinear MPC approximation with closed-loop guarantees
- Title(参考訳): 閉ループ保証を用いた非線形MPC自動近似
- Authors: Abdullah Tokmak, Christian Fiedler, Melanie N. Zeilinger, Sebastian Trimpe, Johannes Köhler,
- Abstract要約: モデル予測制御(MPC)は、安全クリティカルシステムを制御するための構築的なフレームワークを提供する。
非線形MPCスキームに対する明示的な近似を自動的に計算する新しいアルゴリズムを提案することでこの問題に対処する。
2つの非線形 MPC スキームに ALKIA-X を適用し,計算要求の低減と現実問題への適用性を実証した。
- 参考スコア(独自算出の注目度): 7.98874664486269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety guarantees are vital in many control applications, such as robotics. Model predictive control (MPC) provides a constructive framework for controlling safety-critical systems, but is limited by its computational complexity. We address this problem by presenting a novel algorithm that automatically computes an explicit approximation to nonlinear MPC schemes while retaining closed-loop guarantees. Specifically, the problem can be reduced to a function approximation problem, which we then tackle by proposing ALKIA-X, the Adaptive and Localized Kernel Interpolation Algorithm with eXtrapolated reproducing kernel Hilbert space norm. ALKIA-X is a non-iterative algorithm that ensures numerically well-conditioned computations, a fast-to-evaluate approximating function, and the guaranteed satisfaction of any desired bound on the approximation error. Hence, ALKIA-X automatically computes an explicit function that approximates the MPC, yielding a controller suitable for safety-critical systems and high sampling rates. We apply ALKIA-X to approximate two nonlinear MPC schemes, demonstrating reduced computational demand and applicability to realistic problems.
- Abstract(参考訳): 安全保証は、ロボット工学などの多くの制御応用において不可欠である。
モデル予測制御(MPC)は、安全クリティカルなシステムを制御するための構築的なフレームワークを提供するが、計算の複雑さによって制限される。
閉ループ保証を保ちながら非線形MPCスキームへの明示的な近似を自動的に計算する新しいアルゴリズムを提案することでこの問題に対処する。
具体的には、この問題を関数近似問題に還元し、適応局所化カーネル補間アルゴリズムであるALKIA-XとeXtrapolated re production kernel Hilbert space normを提案する。
ALKIA-Xは、数値的によく条件付けられた計算、高速で評価可能な近似関数、および近似誤差に対する任意の所望境界の満足度を保証する非定性アルゴリズムである。
したがって、ALKIA-XはMPCを近似する明示的な関数を自動的に計算し、安全クリティカルなシステムに適したコントローラと高いサンプリングレートを得る。
2つの非線形 MPC スキームに ALKIA-X を適用し,計算要求の低減と現実問題への適用性を実証した。
関連論文リスト
- Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids [14.389086937116582]
本研究では,強化学習とモデル予測制御(MPC)を統合し,混合力学系における最適制御問題の解法を提案する。
提案手法は, MPC手法のオンライン計算時間を著しく短縮し, 最適性ギャップが小さく, 実現可能性が高いポリシーを生成する。
論文 参考訳(メタデータ) (2024-09-17T15:17:16Z) - Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
離散メモリレスソースに対するRDPF(Ralse-Distortion-Perception Function)の計算について検討した。
最適パラメトリック解を特徴付ける。
歪みと知覚制約について十分な条件を提供する。
論文 参考訳(メタデータ) (2024-08-27T12:50:12Z) - Real-Time Adaptive Safety-Critical Control with Gaussian Processes in
High-Order Uncertain Models [14.790031018404942]
本稿では,不確実なパラメータを持つシステムを対象とした適応型オンライン学習フレームワークを提案する。
まず,差分スパースGPアルゴリズムを改良するために,まず忘れ係数を積分する。
第2フェーズでは,高次制御バリア関数に基づく安全フィルタを提案する。
論文 参考訳(メタデータ) (2024-02-29T08:25:32Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Learning Stochastic Parametric Differentiable Predictive Control
Policies [2.042924346801313]
本稿では、ニューラルネットワークポリシーの教師なし学習のための、パラメトリック微分可能予測制御(SP-DPC)と呼ばれるスケーラブルな代替手法を提案する。
SP-DPCはパラメトリック制約最適制御問題に対する決定論的近似として定式化される。
閉ループ制約と確率満足度に関するSP-DPC法を用いて学習したポリシーに関する理論的確率的保証を提供する。
論文 参考訳(メタデータ) (2022-03-02T22:46:32Z) - Uniform-PAC Bounds for Reinforcement Learning with Linear Function
Approximation [92.3161051419884]
線形関数近似を用いた強化学習について検討する。
既存のアルゴリズムは、高い確率的後悔と/またはおよそ正当性(PAC)サンプルの複雑さの保証しか持たない。
我々はFLUTEと呼ばれる新しいアルゴリズムを提案し、高い確率で最適ポリシーへの均一PAC収束を享受する。
論文 参考訳(メタデータ) (2021-06-22T08:48:56Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
未知のマルコフ決定過程に対して学習者がmベースコントローラを与えられる不適切な強化学習設定を考える。
制御器の不適切な混合のクラス上で動作する勾配に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T14:53:55Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - A Gradient-Aware Search Algorithm for Constrained Markov Decision
Processes [9.728259735794987]
まず,有限CMDPの双対線型計画における最適化目標が,ラグランジュのペナルティ乗算器に対する一方向線型凸関数であることを証明した。
有限CMDPの最適状態値関数とラグランジュペナルティ乗算器を求めるために,PWLC構造を利用した2レベルグラディエント・アウェア・サーチ(GAS)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-07T19:38:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。