Disorder-tunable entanglement at infinite temperature
- URL: http://arxiv.org/abs/2312.10216v2
- Date: Tue, 3 Sep 2024 18:02:35 GMT
- Title: Disorder-tunable entanglement at infinite temperature
- Authors: Hang Dong, Jean-Yves Desaules, Yu Gao, Ning Wang, Zexian Guo, Jiachen Chen, Yiren Zou, Feitong Jin, Xuhao Zhu, Pengfei Zhang, Hekang Li, Zhen Wang, Qiujiang Guo, Junxiang Zhang, Lei Ying, Zlatko Papić,
- Abstract summary: We build a custom-built superconducting qubit ladder to realize non-thermalizing states with rich entanglement structures.
Despite effectively forming an "infinite" temperature ensemble, these states robustly encode quantum information far from equilibrium.
- Score: 18.552959588855124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emerging quantum technologies hold the promise of unraveling difficult problems ranging from condensed matter to high energy physics, while at the same time motivating the search for unprecedented phenomena in their setting. Here we utilize a custom-built superconducting qubit ladder to realize non-thermalizing states with rich entanglement structures in the middle of the energy spectrum. Despite effectively forming an "infinite" temperature ensemble, these states robustly encode quantum information far from equilibrium, as we demonstrate by measuring the fidelity and entanglement entropy in the quench dynamics of the ladder. Our approach harnesses the recently proposed type of non-ergodic behavior known as "rainbow scar", which allows us to obtain analytically exact eigenfunctions whose ergodicity-breaking properties can be conveniently controlled by randomizing the couplings of the model, without affecting their energy. The on-demand tunability of quantum correlations via disorder allows for in situ control over ergodicity breaking and it provides a knob for designing exotic many-body states that defy thermalization.
Related papers
- Stable infinite-temperature eigenstates in SU(2)-symmetric nonintegrable models [0.0]
A class of nonintegrable bond-staggered models is endowed with a large number of zero-energy eigenstates and possesses a non-Abelian internal symmetry.
We show that few-magnon zero-energy states have an exact analytical description, allowing us to build a basis of low-entangled fixed-separation states.
arXiv Detail & Related papers (2024-07-16T17:48:47Z) - Plasmonic skyrmion quantum thermodynamics [0.0]
We propose a quantum heat engine that capitalizes on the plasmonic skyrmion lattice.
Through rigorous analysis, we demonstrate that the quantum skyrmion substance exhibits zero irreversible work.
Our engine operates without the need for adiabatic shortcuts.
arXiv Detail & Related papers (2023-12-09T19:44:24Z) - Hot entanglement? -- Parametrically coupled quantum oscillators in two
heat baths: instability, squeezing and driving [0.0]
Entanglement is a cornerstone of quantum sciences and information processing.
Galve et al [Phys. Rev. Lett. textbf105 180501 (2010)] announced that entanglement can be kept at high temperatures.
This work probes into the feasibility of hot entanglement' from three aspects listed in the subtitle.
arXiv Detail & Related papers (2022-12-31T17:24:28Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Lieb's Theorem and Maximum Entropy Condensates [0.0]
In a broad class of lattices Floquet heating can actually be an advantageous effect.
We show that the maximum entropy steady states which form upon driving the ground state of the Hubbard model on unbalanced bi-partite lattices possess uniform off-diagonal long-range order.
This creation of a hot' condensate can occur on textitany driven unbalanced lattice and provides an understanding of how heating can, at the macroscopic level, expose and alter the order in a quantum system.
arXiv Detail & Related papers (2021-03-08T11:51:08Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Coherences and the thermodynamic uncertainty relation: Insights from
quantum absorption refrigerators [6.211723927647019]
We examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime.
Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
arXiv Detail & Related papers (2020-11-30T03:15:27Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.