Coherences and the thermodynamic uncertainty relation: Insights from
quantum absorption refrigerators
- URL: http://arxiv.org/abs/2011.14518v2
- Date: Wed, 2 Dec 2020 00:12:18 GMT
- Title: Coherences and the thermodynamic uncertainty relation: Insights from
quantum absorption refrigerators
- Authors: Junjie Liu and Dvira Segal
- Abstract summary: We examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime.
Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
- Score: 6.211723927647019
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The thermodynamic uncertainty relation, originally derived for classical
Markov-jump processes, provides a trade-off relation between precision and
dissipation, deepening our understanding of the performance of quantum thermal
machines. Here, we examine the interplay of quantum system coherences and heat
current fluctuations on the validity of the thermodynamics uncertainty relation
in the quantum regime. To achieve the current statistics, we perform a full
counting statistics simulation of the Redfield quantum master equation. We
focus on steady-state quantum absorption refrigerators where nonzero coherence
between eigenstates can either suppress or enhance the cooling power, compared
with the incoherent limit. In either scenario, we find enhanced relative noise
of the cooling power (standard deviation of the power over the mean) in the
presence of system coherence, thereby corroborating the thermodynamic
uncertainty relation. Our results indicate that fluctuations necessitate
consideration when assessing the performance of quantum coherent thermal
machines.
Related papers
- Operator-based quantum thermodynamic uncertainty relations [0.0]
Heisenberg uncertainty relation has an important footprint on the quantum behavior of a physical system.
Motivated by this principle, we propose that thermodynamic currents associated with work, heat, and internal energy are described by well-defined Hermitian operators.
arXiv Detail & Related papers (2024-06-17T18:00:17Z) - Quantum Computer-Based Verification of Quantum Thermodynamic Uncertainty Relation [1.6574413179773757]
Quantum thermodynamic uncertainty relations establish the fundamental trade-off between precision and thermodynamic costs.
We present an approach that utilizes a noisy quantum computer for verifying a general quantum thermodynamic uncertainty relation.
This study highlights the potential and limitations of noisy quantum computers for demonstrating quantum thermodynamic trade-offs.
arXiv Detail & Related papers (2024-02-29T15:55:29Z) - Quantum thermodynamic uncertainty relation under feedback control [1.9580473532948401]
We explore how quantum feedback, a control technique used to manipulate quantum systems, can enhance the precision.
We find that the presence of feedback control can increase the accuracy of continuous measured systems.
arXiv Detail & Related papers (2023-12-12T16:27:18Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Thermodynamics and Fluctuations in Quantum Heat Engines under Reservoir
Squeezing [7.109424824240926]
We show that reservoir squeezing significantly enhances the performance by increasing the thermodynamic efficiency and the power.
An experimental scheme for realizing this quantum heat engine is proposed using a single-electron spin pertaining to a trapped 40Ca$+$ ion.
arXiv Detail & Related papers (2022-09-13T11:15:31Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Thermodynamics of Precision in Markovian Open Quantum Dynamics [0.0]
thermodynamic and kinetic uncertainty relations indicate trade-offs between the relative fluctuation of observables and thermodynamic quantities.
We derive finite-time lower bounds on the relative fluctuation of both dynamical observables and their first passage times for arbitrary initial states.
We find that the product of the relative fluctuation and entropy production or dynamical activity is enhanced by quantum coherence in a generic class of dissipative processes of systems with nondegenerate energy levels.
arXiv Detail & Related papers (2021-11-08T16:12:03Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.