Self-supervised Adaptive Weighting for Cooperative Perception in V2V
Communications
- URL: http://arxiv.org/abs/2312.10342v1
- Date: Sat, 16 Dec 2023 06:21:09 GMT
- Title: Self-supervised Adaptive Weighting for Cooperative Perception in V2V
Communications
- Authors: Chenguang Liu, Jianjun Chen, Yunfei Chen, Ryan Payton, Michael Riley,
Shuang-Hua Yang
- Abstract summary: Cooperative perception is an effective approach to addressing the shortcomings of single-vehicle perception.
Current cooperative fusion models rely on supervised models and do not address dynamic performance degradation caused by arbitrary channel impairments.
A self-supervised adaptive weighting model is proposed for intermediate fusion to mitigate the adverse effects of channel distortion.
- Score: 11.772899644895281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perception of the driving environment is critical for collision avoidance and
route planning to ensure driving safety. Cooperative perception has been widely
studied as an effective approach to addressing the shortcomings of
single-vehicle perception. However, the practical limitations of
vehicle-to-vehicle (V2V) communications have not been adequately investigated.
In particular, current cooperative fusion models rely on supervised models and
do not address dynamic performance degradation caused by arbitrary channel
impairments. In this paper, a self-supervised adaptive weighting model is
proposed for intermediate fusion to mitigate the adverse effects of channel
distortion. The performance of cooperative perception is investigated in
different system settings. Rician fading and imperfect channel state
information (CSI) are also considered. Numerical results demonstrate that the
proposed adaptive weighting algorithm significantly outperforms the benchmarks
without weighting. Visualization examples validate that the proposed weighting
algorithm can flexibly adapt to various channel conditions. Moreover, the
adaptive weighting algorithm demonstrates good generalization to untrained
channels and test datasets from different domains.
Related papers
- Efficient Test-time Adaptive Object Detection via Sensitivity-Guided Pruning [73.40364018029673]
Continual test-time adaptive object detection (CTTA-OD) aims to online adapt a source pre-trained detector to ever-changing environments.<n>Our motivation stems from the observation that not all learned source features are beneficial.<n>Our method achieves superior adaptation performance while reducing computational overhead by 12% in FLOPs.
arXiv Detail & Related papers (2025-06-03T05:27:56Z) - Coop-WD: Cooperative Perception with Weighting and Denoising for Robust V2V Communication [23.039742419070805]
We propose a joint weighting and denoising framework, Coop-WD, to enhance cooperative perception subject to V2V channel impairments.<n>An efficient variant model, Coop-WD-eco, is proposed to selectively deactivate denoising to reduce processing overhead.
arXiv Detail & Related papers (2025-05-06T13:38:35Z) - Does Unsupervised Domain Adaptation Improve the Robustness of Amortized Bayesian Inference? A Systematic Evaluation [3.4109073456116477]
Recent robust approaches employ unsupervised domain adaptation (UDA) to match the embedding spaces of simulated and observed data.
We demonstrate that aligning summary spaces between domains effectively mitigates the impact of unmodeled phenomena or noise.
Our results underscore the need for careful consideration of misspecification types when using UDA techniques to increase the robustness of ABI in practice.
arXiv Detail & Related papers (2025-02-07T14:13:51Z) - Anomaly Detection in Cooperative Vehicle Perception Systems under Imperfect Communication [4.575903181579272]
We propose a cooperative-perception-based anomaly detection framework (CPAD)
CPAD is a robust architecture that remains effective under communication interruptions.
Empirical results demonstrate that our approach outperforms standard anomaly classification methods in F1-score, AUC.
arXiv Detail & Related papers (2025-01-28T22:41:06Z) - Multi-Modality Driven LoRA for Adverse Condition Depth Estimation [61.525312117638116]
We propose Multi-Modality Driven LoRA (MMD-LoRA) for Adverse Condition Depth Estimation.
It consists of two core components: Prompt Driven Domain Alignment (PDDA) and Visual-Text Consistent Contrastive Learning (VTCCL)
It achieves state-of-the-art performance on the nuScenes and Oxford RobotCar datasets.
arXiv Detail & Related papers (2024-12-28T14:23:58Z) - Adaptive Conformal Inference by Betting [51.272991377903274]
We consider the problem of adaptive conformal inference without any assumptions about the data generating process.
Existing approaches for adaptive conformal inference are based on optimizing the pinball loss using variants of online gradient descent.
We propose a different approach for adaptive conformal inference that leverages parameter-free online convex optimization techniques.
arXiv Detail & Related papers (2024-12-26T18:42:08Z) - Secure Hierarchical Federated Learning in Vehicular Networks Using Dynamic Client Selection and Anomaly Detection [10.177917426690701]
Hierarchical Federated Learning (HFL) faces the challenge of adversarial or unreliable vehicles in vehicular networks.
Our study introduces a novel framework that integrates dynamic vehicle selection and robust anomaly detection mechanisms.
Our proposed algorithm demonstrates remarkable resilience even under intense attack conditions.
arXiv Detail & Related papers (2024-05-25T18:31:20Z) - SmartCooper: Vehicular Collaborative Perception with Adaptive Fusion and
Judger Mechanism [23.824400533836535]
We introduce SmartCooper, an adaptive collaborative perception framework that incorporates communication optimization and a judger mechanism.
Our results demonstrate a substantial reduction in communication costs by 23.10% compared to the non-judger scheme.
arXiv Detail & Related papers (2024-02-01T04:15:39Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - MASS: Mobility-Aware Sensor Scheduling of Cooperative Perception for
Connected Automated Driving [19.66714697653504]
A new paradigm, Cooperative Perception (CP), comes to the rescue by sharing sensor data from a cooperative vehicle (CoV)
Existing methods rely on the exchange of meta-information, such as visibility maps, to predict the perception gains from nearby vehicles.
We propose a new approach, learning while scheduling, for distributed scheduling of CP.
The proposed MASS algorithm achieves the best average perception gain and improves recall by up to 4.2 percentage points compared to other learning-based algorithms.
arXiv Detail & Related papers (2023-02-25T09:03:05Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
Uncertainty estimation is an important task for critical problems, such as robotics and autonomous driving.
We propose a Variational Neural Network-based version of a Voxel Pseudo Image Tracking (VPIT) method for 3D Single Object Tracking.
arXiv Detail & Related papers (2023-02-12T13:34:50Z) - Data efficient reinforcement learning and adaptive optimal perimeter
control of network traffic dynamics [0.0]
This work proposes an integral reinforcement learning (IRL) based approach to learning the macroscopic traffic dynamics for adaptive optimal perimeter control.
To reduce the sampling complexity and use the available data more efficiently, the experience replay (ER) technique is introduced to the IRL algorithm.
The convergence of the IRL-based algorithms and the stability of the controlled traffic dynamics are proven via the Lyapunov theory.
arXiv Detail & Related papers (2022-09-13T04:28:49Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
We propose a novel channel pruning method via Class-Aware Trace Ratio Optimization (CATRO) to reduce the computational burden and accelerate the model inference.
We show that CATRO achieves higher accuracy with similar cost or lower cost with similar accuracy than other state-of-the-art channel pruning algorithms.
Because of its class-aware property, CATRO is suitable to prune efficient networks adaptively for various classification subtasks, enhancing handy deployment and usage of deep networks in real-world applications.
arXiv Detail & Related papers (2021-10-21T06:26:31Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
A new federated learning (FL) framework is proposed for designing the autonomous controller of connected and autonomous vehicles (CAVs)
A novel dynamic federated proximal (DFP) algorithm is proposed that accounts for the mobility of CAVs, the wireless fading channels, and the unbalanced and nonindependent and identically distributed data across CAVs.
A rigorous convergence analysis is performed for the proposed algorithm to identify how fast the CAVs converge to using the optimal controller.
arXiv Detail & Related papers (2021-02-05T19:57:47Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
Optimal Transport (OT) distances such as Wasserstein have been used in several areas such as GANs and domain adaptation.
We propose a computationally-efficient dual form of the robust OT optimization that is amenable to modern deep learning applications.
Our approach can train state-of-the-art GAN models on noisy datasets corrupted with outlier distributions.
arXiv Detail & Related papers (2020-10-12T17:13:40Z) - Learning Scalable Multi-Agent Coordination by Spatial Differentiation
for Traffic Signal Control [8.380832628205372]
We design a multiagent coordination framework based on Deep Reinforcement Learning methods for traffic signal control.
Specifically, we propose the Spatial Differentiation method for coordination which uses the temporal-spatial information in the replay buffer to amend the reward of each action.
arXiv Detail & Related papers (2020-02-27T02:16:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.