Anomaly Detection in Cooperative Vehicle Perception Systems under Imperfect Communication
- URL: http://arxiv.org/abs/2501.17329v1
- Date: Tue, 28 Jan 2025 22:41:06 GMT
- Title: Anomaly Detection in Cooperative Vehicle Perception Systems under Imperfect Communication
- Authors: Ashish Bastola, Hao Wang, Abolfazl Razi,
- Abstract summary: We propose a cooperative-perception-based anomaly detection framework (CPAD)
CPAD is a robust architecture that remains effective under communication interruptions.
Empirical results demonstrate that our approach outperforms standard anomaly classification methods in F1-score, AUC.
- Score: 4.575903181579272
- License:
- Abstract: Anomaly detection is a critical requirement for ensuring safety in autonomous driving. In this work, we leverage Cooperative Perception to share information across nearby vehicles, enabling more accurate identification and consensus of anomalous behaviors in complex traffic scenarios. To account for the real-world challenge of imperfect communication, we propose a cooperative-perception-based anomaly detection framework (CPAD), which is a robust architecture that remains effective under communication interruptions, thereby facilitating reliable performance even in low-bandwidth settings. Since no multi-agent anomaly detection dataset exists for vehicle trajectories, we introduce 15,000 different scenarios with a 90,000 trajectories benchmark dataset generated through rule-based vehicle dynamics analysis. Empirical results demonstrate that our approach outperforms standard anomaly classification methods in F1-score, AUC and showcase strong robustness to agent connection interruptions.
Related papers
- A neural-network based anomaly detection system and a safety protocol to protect vehicular network [0.0]
This thesis addresses the use of Cooperative Intelligent Transport Systems (CITS) to improve road safety and efficiency by enabling vehicle-to-vehicle communication.
To ensure safety, the thesis proposes a Machine Learning-based Misbehavior Detection System (MDS) using Long Short-Term Memory (LSTM) networks.
arXiv Detail & Related papers (2024-11-11T14:15:59Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Field Testing and Detection of Camera Interference for Autonomous Driving [3.3148826359547514]
This study explores the detection of camera interference attacks (CIA) within an automotive ethernet-driven environment using a novel GRU-based IDS.
Our IDS effectively analyzes packet length sequences to differentiate between normal and anomalous data transmissions.
arXiv Detail & Related papers (2024-08-08T15:24:19Z) - Secure Hierarchical Federated Learning in Vehicular Networks Using Dynamic Client Selection and Anomaly Detection [10.177917426690701]
Hierarchical Federated Learning (HFL) faces the challenge of adversarial or unreliable vehicles in vehicular networks.
Our study introduces a novel framework that integrates dynamic vehicle selection and robust anomaly detection mechanisms.
Our proposed algorithm demonstrates remarkable resilience even under intense attack conditions.
arXiv Detail & Related papers (2024-05-25T18:31:20Z) - Edge-Assisted ML-Aided Uncertainty-Aware Vehicle Collision Avoidance at Urban Intersections [12.812518632907771]
We present a novel framework that detects preemptively collisions at urban crossroads.
We exploit the Multi-access Edge Computing platform of 5G networks.
arXiv Detail & Related papers (2024-04-22T18:45:40Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
A new federated learning (FL) framework is proposed for designing the autonomous controller of connected and autonomous vehicles (CAVs)
A novel dynamic federated proximal (DFP) algorithm is proposed that accounts for the mobility of CAVs, the wireless fading channels, and the unbalanced and nonindependent and identically distributed data across CAVs.
A rigorous convergence analysis is performed for the proposed algorithm to identify how fast the CAVs converge to using the optimal controller.
arXiv Detail & Related papers (2021-02-05T19:57:47Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
We study the setting proposed in V2VNet, where nearby self-driving vehicles jointly perform object detection and motion forecasting in a cooperative manner.
We propose a novel neural reasoning framework that learns to communicate, to estimate potential errors, and to reach a consensus about those errors.
arXiv Detail & Related papers (2020-11-10T18:19:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.