UltraClean: A Simple Framework to Train Robust Neural Networks against Backdoor Attacks
- URL: http://arxiv.org/abs/2312.10657v1
- Date: Sun, 17 Dec 2023 09:16:17 GMT
- Title: UltraClean: A Simple Framework to Train Robust Neural Networks against Backdoor Attacks
- Authors: Bingyin Zhao, Yingjie Lao,
- Abstract summary: Backdoor attacks are emerging threats to deep neural networks.
They typically embed malicious behaviors into a victim model by injecting poisoned samples.
We propose UltraClean, a framework that simplifies the identification of poisoned samples.
- Score: 19.369701116838776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks are emerging threats to deep neural networks, which typically embed malicious behaviors into a victim model by injecting poisoned samples. Adversaries can activate the injected backdoor during inference by presenting the trigger on input images. Prior defensive methods have achieved remarkable success in countering dirty-label backdoor attacks where the labels of poisoned samples are often mislabeled. However, these approaches do not work for a recent new type of backdoor -- clean-label backdoor attacks that imperceptibly modify poisoned data and hold consistent labels. More complex and powerful algorithms are demanded to defend against such stealthy attacks. In this paper, we propose UltraClean, a general framework that simplifies the identification of poisoned samples and defends against both dirty-label and clean-label backdoor attacks. Given the fact that backdoor triggers introduce adversarial noise that intensifies in feed-forward propagation, UltraClean first generates two variants of training samples using off-the-shelf denoising functions. It then measures the susceptibility of training samples leveraging the error amplification effect in DNNs, which dilates the noise difference between the original image and denoised variants. Lastly, it filters out poisoned samples based on the susceptibility to thwart the backdoor implantation. Despite its simplicity, UltraClean achieves a superior detection rate across various datasets and significantly reduces the backdoor attack success rate while maintaining a decent model accuracy on clean data, outperforming existing defensive methods by a large margin. Code is available at https://github.com/bxz9200/UltraClean.
Related papers
- DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks [30.766013737094532]
We propose DMGNN against out-of-distribution (OOD) and in-distribution (ID) graph backdoor attacks.
DMGNN can easily identify the hidden ID and OOD triggers via predicting label transitions based on counterfactual explanation.
DMGNN far outperforms the state-of-the-art (SOTA) defense methods, reducing the attack success rate to 5% with almost negligible degradation in model performance.
arXiv Detail & Related papers (2024-10-18T01:08:03Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - Beating Backdoor Attack at Its Own Game [10.131734154410763]
Deep neural networks (DNNs) are vulnerable to backdoor attack.
Existing defense methods have greatly reduced attack success rate.
We propose a highly effective framework which injects non-adversarial backdoors targeting poisoned samples.
arXiv Detail & Related papers (2023-07-28T13:07:42Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases [50.065022493142116]
Trojan attack on deep neural networks, also known as backdoor attack, is a typical threat to artificial intelligence.
FreeEagle is the first data-free backdoor detection method that can effectively detect complex backdoor attacks.
arXiv Detail & Related papers (2023-02-28T11:31:29Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
Backdoor adversaries inject hidden backdoors that can be activated by adversary-specified trigger patterns.
One recent research revealed that most of the existing attacks failed in the real physical world.
arXiv Detail & Related papers (2022-11-02T16:03:43Z) - Invisible Backdoor Attacks Using Data Poisoning in the Frequency Domain [8.64369418938889]
We propose a generalized backdoor attack method based on the frequency domain.
It can implement backdoor implantation without mislabeling and accessing the training process.
We evaluate our approach in the no-label and clean-label cases on three datasets.
arXiv Detail & Related papers (2022-07-09T07:05:53Z) - Kallima: A Clean-label Framework for Textual Backdoor Attacks [25.332731545200808]
We propose the first clean-label framework Kallima for synthesizing mimesis-style backdoor samples.
We modify inputs belonging to the target class with adversarial perturbations, making the model rely more on the backdoor trigger.
arXiv Detail & Related papers (2022-06-03T21:44:43Z) - Adversarial Fine-tuning for Backdoor Defense: Connect Adversarial
Examples to Triggered Samples [15.57457705138278]
We propose a new Adversarial Fine-Tuning (AFT) approach to erase backdoor triggers.
AFT can effectively erase the backdoor triggers without obvious performance degradation on clean samples.
arXiv Detail & Related papers (2022-02-13T13:41:15Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.