Passive and Deterministic Controlled-phase Gate for Single-photon Wavepackets Based on Time-reversal Symmetric Photon Transport
- URL: http://arxiv.org/abs/2312.10719v4
- Date: Thu, 4 Apr 2024 04:01:16 GMT
- Title: Passive and Deterministic Controlled-phase Gate for Single-photon Wavepackets Based on Time-reversal Symmetric Photon Transport
- Authors: Zhaohua Tian, Xue-Wen Chen,
- Abstract summary: The proposed gate is rooted in the concept of time-reversal symmetric photon transport.
It can circumvent the longstanding issue of wavepacket distortion inherent in photonic phase gates employing nonlinear media.
The gate fidelity can exceed 99% for a node with only four cavities for both single-photon and two-photon operations.
- Score: 0.6813925418351434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report the construction of a passive, deterministic and near-unity-fidelity controlled-$\pi$-phase gate for single-photon wavepackets with a node comprising a two-level emitter and a small number of cavities. The proposed gate is rooted in the concept of time-reversal symmetric photon transport, which makes the entire photon transport process into a perfect absorption and re-emission process. Consequently, it can circumvent the longstanding issue of wavepacket distortion inherent in photonic phase gates employing nonlinear media. Moreover, such time-reversal symmetric transport ensures the nonlinear $\pi$ phase shift by a single two-level emitter for the two-photon case. We develop analytical solutions to reveal the temporal dynamics of the nonlinear photon transport and to optimize the gate structure. Notably, the gate fidelity can exceed 99\% for a node with only four cavities for both single-photon and two-photon operations. Moreover, the proposed gate architecture is compatible with the platforms of integrated photonics.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Temporal quantum eraser: Fusion gates with distinguishable photons [0.0]
We show that the ideal operation of two-photon gates can be recovered from distinguishable photons.
We introduce a temporal quantum eraser between a pair of modally-impure single-photon sources.
The ability to lift the requirement for identical photons bears considerable potential in linear-optics quantum information processing.
arXiv Detail & Related papers (2024-04-01T22:44:02Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Linear optical universal quantum gates with higher success probabilities [0.0]
We construct two compact quantum circuits to implement post-selected controlled-phase-flip (CPF) gate and Toffoli gate.
Linear optical implementations of the presented two universal gates are feasible under current technology.
arXiv Detail & Related papers (2022-08-13T08:58:19Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.