論文の概要: Validation of Rigorous Requirements Specifications and Document
Automation with the ITLingo RSL Language
- arxiv url: http://arxiv.org/abs/2312.10822v1
- Date: Sun, 17 Dec 2023 21:39:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 14:21:43.064256
- Title: Validation of Rigorous Requirements Specifications and Document
Automation with the ITLingo RSL Language
- Title(参考訳): ITLingo RSL言語による厳密な要求仕様と文書自動化の検証
- Authors: Andre Rodrigues, Alberto Rodrigues da Silva
- Abstract要約: ITLingoイニシアチブは、技術的文書の厳密さと一貫性を高めるためにRSLという要求仕様言語を導入した。
本稿では、要求検証と文書自動化の分野における既存の研究・ツールについてレビューする。
我々は、カスタマイズされたチェックと、RSL自体で動的に定義された言語規則に基づいて、仕様の検証によりRSLを拡張することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite being an essential step in software development, writing requirements
specifications is frequently performed in natural language, leading to issues
like inconsistency, incompleteness, or ambiguity. The ITLingo initiative has
introduced a requirements specification language named RSL to enhance the rigor
and consistency of technical documentation. On the other hand, natural language
processing (NLP) is a field that has been supporting the automatic analysis of
requirements by helping to detect issues that may be difficult to see during a
manual review. Once the requirements specifications are validated, it is
important to automate the generation of documents for these specifications to
reduce manual work, reduce errors, and to produce documentation in multiple
formats that are more easily reusable or recognized by the different
stakeholders. This paper reviews existing research and tools in the fields of
requirements validation and document automation. We propose to extend RSL with
validation of specifications based on customized checks, and on linguistic
rules dynamically defined in the RSL itself. In addition, we also propose the
automatic generation of documents from these specifications to JSON, TXT, or
other file formats using template files. We use a fictitious business
information system to support the explanation and to demonstrate how these
validation checks can assist in writing better requirements specifications and
then generate documents in multiple formats based on them. Finally, we evaluate
the usability of the proposed validation and document automation approach
through a user session.
- Abstract(参考訳): ソフトウェア開発において不可欠なステップであるにもかかわらず、要件仕様の記述は自然言語で頻繁に行われ、一貫性、不完全性、曖昧さといった問題につながります。
ITLingoイニシアチブは、技術的文書の厳密さと一貫性を高めるためにRSLという要求仕様言語を導入した。
一方、自然言語処理(NLP)は、手動によるレビューで見にくい問題を検出することを支援することで、要求の自動分析を支援する分野である。
要件仕様が検証されると、手動作業の削減、エラーの低減、さまざまな利害関係者による再利用や認識の容易な複数のフォーマットによるドキュメントの作成など、これらの仕様のためのドキュメント生成を自動化することが重要になります。
本稿では,要件検証と文書自動化の分野における既存研究とツールについて概説する。
我々は、カスタマイズされたチェックと、RSL自体で動的に定義された言語規則に基づいて、仕様の検証によりRSLを拡張することを提案する。
また、テンプレートファイルを用いて、これらの仕様からjson、txt、その他のファイルフォーマットへのドキュメントの自動生成も提案する。
我々は、架空のビジネス情報システムを使用して説明をサポートし、これらの検証チェックがより良い要求仕様を作成し、それに基づいて複数のフォーマットで文書を生成するのにどのように役立つかを実証する。
最後に,提案する検証および文書自動化手法の有用性をユーザセッションを通じて評価する。
関連論文リスト
- Evaluating LLM-driven User-Intent Formalization for Verification-Aware Languages [6.0608817611709735]
本稿では,検証対応言語における仕様の質を評価するための指標を提案する。
MBPPコード生成ベンチマークのDafny仕様の人間ラベル付きデータセットに,我々の測定値が密接に一致することを示す。
また、このテクニックをより広く適用するために対処する必要がある正式な検証課題についても概説する。
論文 参考訳(メタデータ) (2024-06-14T06:52:08Z) - Enchanting Program Specification Synthesis by Large Language Models using Static Analysis and Program Verification [15.686651364655958]
AutoSpecは、自動プログラム検証のための仕様を合成するための自動化アプローチである。
仕様の汎用性における既存の作業の欠点を克服し、完全な証明のために十分かつ適切な仕様を合成する。
実世界のX509パーサプロジェクトでプログラムを検証するためにうまく適用することができる。
論文 参考訳(メタデータ) (2024-03-31T18:15:49Z) - Eliciting Human Preferences with Language Models [56.68637202313052]
言語モデル(LM)は、ラベル付き例や自然言語のプロンプトを使用してターゲットタスクを実行するように指示することができる。
タスク仕様プロセスのガイドには*LM自身を使うことを提案します。
我々は、メール検証、コンテンツレコメンデーション、道徳的推論の3つの領域でGATEを研究している。
論文 参考訳(メタデータ) (2023-10-17T21:11:21Z) - A General Framework for Verification and Control of Dynamical Models via Certificate Synthesis [54.959571890098786]
システム仕様を符号化し、対応する証明書を定義するためのフレームワークを提供する。
コントローラと証明書を形式的に合成する自動化手法を提案する。
我々のアプローチは、ニューラルネットワークの柔軟性を利用して、制御のための安全な学習の幅広い分野に寄与する。
論文 参考訳(メタデータ) (2023-09-12T09:37:26Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
文書理解とは、ウェブページのようなデジタル文書から自動的に情報を抽出し、分析し、理解することである。
既存のMLLM(Multi-model Large Language Models)は、浅いOCRフリーテキスト認識において、望ましくないゼロショット機能を実証している。
論文 参考訳(メタデータ) (2023-07-04T11:28:07Z) - Automated Few-shot Classification with Instruction-Finetuned Language
Models [76.69064714392165]
我々は、AuT-Fewが最先端の数ショット学習方法より優れていることを示す。
AuT-Few は RAFT few-shot ベンチマークにおいて,データセット間で最高のランク付け手法であることを示す。
論文 参考訳(メタデータ) (2023-05-21T21:50:27Z) - nl2spec: Interactively Translating Unstructured Natural Language to
Temporal Logics with Large Language Models [3.1143846686797314]
大規模言語モデル(LLM)を適用するためのフレームワークであるnl2specは、構造化されていない自然言語から正式な仕様を導出する。
本稿では,自然言語におけるシステム要求のあいまいさを検知し,解決する新たな手法を提案する。
ユーザは、これらのサブ翻訳を反復的に追加、削除、編集して、不正なフォーマル化を修正する。
論文 参考訳(メタデータ) (2023-03-08T20:08:53Z) - Technical Report on Neural Language Models and Few-Shot Learning for
Systematic Requirements Processing in MDSE [1.6286277560322266]
本論文は,自動車要件のオープンソースセットの分析に基づくものである。
ドメイン固有の言語構造を導き、要求の不明瞭さを回避し、形式性のレベルを上げるのに役立ちます。
論文 参考訳(メタデータ) (2022-11-16T18:06:25Z) - Natural Language Processing for Systems Engineering: Automatic
Generation of Systems Modelling Language Diagrams [0.10312968200748115]
構造化されていない自然言語テキストからシステム図の自動生成を支援する手法が提案されている。
目的は、より標準化され、包括的で自動化されたスタートポイントをユーザに提供することです。
論文 参考訳(メタデータ) (2022-08-09T19:20:33Z) - Automatic Extraction of Rules Governing Morphological Agreement [103.78033184221373]
原文から第一パス文法仕様を抽出する自動フレームワークを開発する。
我々は、世界の多くの言語の文法の中核にあるモルフォシンタクティックな現象である合意を記述する規則の抽出に焦点をあてる。
我々のフレームワークはUniversal Dependenciesプロジェクトに含まれるすべての言語に適用され、有望な結果が得られます。
論文 参考訳(メタデータ) (2020-10-02T18:31:45Z) - SPECTER: Document-level Representation Learning using Citation-informed
Transformers [51.048515757909215]
SPECTERは、Transformer言語モデルの事前学習に基づいて、科学文書の文書レベルの埋め込みを生成する。
SciDocsは、引用予測から文書分類、レコメンデーションまでの7つの文書レベルのタスクからなる新しい評価ベンチマークである。
論文 参考訳(メタデータ) (2020-04-15T16:05:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。