Predict and Interpret Health Risk using EHR through Typical Patients
- URL: http://arxiv.org/abs/2312.10977v1
- Date: Mon, 18 Dec 2023 07:00:20 GMT
- Title: Predict and Interpret Health Risk using EHR through Typical Patients
- Authors: Zhihao Yu, Chaohe Zhang, Yasha Wang, Wen Tang, Jiangtao Wang, Liantao
Ma
- Abstract summary: We propose a Progressive Prototypical Network (PPN) to select typical patients as prototypes and utilize their information to enhance the representation of the given patient.
Experiments on three real-world datasets demonstrate that our model brings improvement on all metrics.
- Score: 14.457088774025731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting health risks from electronic health records (EHR) is a topic of
recent interest. Deep learning models have achieved success by modeling
temporal and feature interaction. However, these methods learn insufficient
representations and lead to poor performance when it comes to patients with few
visits or sparse records. Inspired by the fact that doctors may compare the
patient with typical patients and make decisions from similar cases, we propose
a Progressive Prototypical Network (PPN) to select typical patients as
prototypes and utilize their information to enhance the representation of the
given patient. In particular, a progressive prototype memory and two prototype
separation losses are proposed to update prototypes. Besides, a novel
integration is introduced for better fusing information from patients and
prototypes. Experiments on three real-world datasets demonstrate that our model
brings improvement on all metrics. To make our results better understood by
physicians, we developed an application at http://ppn.ai-care.top. Our code is
released at https://github.com/yzhHoward/PPN.
Related papers
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - An Interpretable Deep-Learning Framework for Predicting Hospital
Readmissions From Electronic Health Records [2.156208381257605]
We propose a novel, interpretable deep-learning framework for predicting unplanned hospital readmissions.
We validate our system on the two predictive tasks of hospital readmission within 30 and 180 days, using real-world data.
arXiv Detail & Related papers (2023-10-16T08:48:52Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Why patient data cannot be easily forgotten? [18.089204090335667]
We study the influence of patient data on model performance and formulate two hypotheses for a patient's data.
We propose a targeted forgetting approach to perform patient-wise forgetting.
arXiv Detail & Related papers (2022-06-29T11:36:49Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
Existing approaches typically train models in a patient-specific fashion due to the highly personalized characteristics of epileptic signals.
A patient-specific model can then be obtained with the help of distilled knowledge and additional personalized data.
Five state-of-the-art seizure prediction methods are trained on the CHB-MIT sEEG database with our proposed scheme.
arXiv Detail & Related papers (2022-02-25T10:30:29Z) - MedGPT: Medical Concept Prediction from Clinical Narratives [0.23488056916440858]
Temporal modelling of a patient's medical history can be used to predict future events.
We present MedGPT, a novel transformer-based pipeline that uses Named Entity Recognition and Linking tools.
We show that our model captures medical knowledge by testing it on an experimental medical multiple choice question answering task.
arXiv Detail & Related papers (2021-07-07T10:36:28Z) - Medical Profile Model: Scientific and Practical Applications in
Healthcare [1.718235998156457]
We present the patient histories as temporal sequences of diseases for which embeddings are learned in an unsupervised setup.
The embedding space includes demographic parameters which allow the creation of generalized patient profiles.
The training of such a medical profile model has been performed on a dataset of more than one million patients.
arXiv Detail & Related papers (2021-06-21T13:30:43Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.