Assessment of cryptographic approaches for a quantum-resistant Galileo OSNMA
- URL: http://arxiv.org/abs/2312.11080v2
- Date: Mon, 3 Jun 2024 14:26:29 GMT
- Title: Assessment of cryptographic approaches for a quantum-resistant Galileo OSNMA
- Authors: Javier Junquera-Sánchez, Carlos Hernando-Ramiro, Óscar Gamallo-Palomares, José-Antonio Gómez-Sánchez,
- Abstract summary: We analyse the state of the Galileo Open Service Navigation Message Authentication (OSNMA) to overcome these new threats.
The main barrier to adopting the PQC approach is the size of both the signature and the key.
This work concludes by assessing different temporal countermeasures that can be implemented to sustain the system's integrity in the short term.
- Score: 4.281182764767519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing becomes more of a reality as time passes, bringing several cybersecurity challenges. Modern cryptography is based on the computational complexity of specific mathematical problems, but as new quantum-based computers appear, classical methods might not be enough to secure communications. In this paper, we analyse the state of the Galileo Open Service Navigation Message Authentication (OSNMA) to overcome these new threats. This analysis and its assessment have been performed using OSNMA documentation, reviewing the available Post Quantum Cryptography (PQC) algorithms competing in the National Institute of Standards and Technology (NIST) standardization process, and studying the possibility of its implementation in the Galileo service. The main barrier to adopting the PQC approach is the size of both the signature and the key. The analysis shows that OSNMA is not yet prepared to face the quantum threat, and a significant change would be required. This work concludes by assessing different temporal countermeasures that can be implemented to sustain the system's integrity in the short term.
Related papers
- Evaluating the Potential of Quantum Machine Learning in Cybersecurity: A Case-Study on PCA-based Intrusion Detection Systems [42.184783937646806]
We investigate the potential impact of quantum computing and machine learning (QML) on cybersecurity applications of traditional ML.
First, we explore the potential advantages of quantum computing in machine learning problems specifically related to cybersecurity.
Then, we describe a methodology to quantify the future impact of fault-tolerant QML algorithms on real-world problems.
arXiv Detail & Related papers (2025-02-16T15:49:25Z) - Application of $α$-order Information Metrics for Secure Communication in Quantum Physical Layer Design [45.41082277680607]
We study the $alpha$-order information-theoretic metrics based on R'enyi entropy.
We apply our framework to a practical scenario involving BPSK modulation over a lossy bosonic channel.
arXiv Detail & Related papers (2025-02-07T03:44:11Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - A Security Assessment tool for Quantum Threat Analysis [34.94301200620856]
The rapid advancement of quantum computing poses a significant threat to many current security algorithms used for secure communication, digital authentication, and information encryption.
A sufficiently powerful quantum computer could potentially exploit vulnerabilities in these algorithms, rendering data in insecure transit.
This work developed a quantum assessment tool for organizations, providing tailored recommendations for transitioning their security protocols into a post-quantum world.
arXiv Detail & Related papers (2024-07-18T13:58:34Z) - Applications of Post-quantum Cryptography [0.0]
The review employs a systematic scoping review with the scope restricted to the years 2022 and 2023.
The review examined the articles on the applications of quantum computing in various spheres.
The paper is analyzing various PQC algorithms, including lattice-based, hash-based, code-based, and isogeny-based cryptography.
arXiv Detail & Related papers (2024-06-19T06:45:39Z) - Evaluation Framework for Quantum Security Risk Assessment: A Comprehensive Strategy for Quantum-Safe Transition [0.03749861135832072]
The rise of large-scale quantum computing poses a significant threat to traditional cryptographic security measures.
Quantum attacks undermine current asymmetric cryptographic algorithms, rendering them ineffective.
This study explores the challenges of migrating to quantum-safe cryptographic states.
arXiv Detail & Related papers (2024-04-12T04:18:58Z) - Post-Quantum Cryptography: Securing Digital Communication in the Quantum Era [0.0]
Post-quantum cryptography (PQC) is a critical field aimed at developing resilient cryptographic algorithms to quantum attacks.
This paper delineates the vulnerabilities of classical cryptographic systems to quantum attacks, elucidates impervious principles of quantum computing, and introduces various PQC algorithms.
arXiv Detail & Related papers (2024-03-18T12:51:56Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.