Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
- URL: http://arxiv.org/abs/2504.12773v1
- Date: Thu, 17 Apr 2025 09:13:46 GMT
- Title: Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
- Authors: Yicheng Pan, Zhenrong Zhang, Pengfei Hu, Jiefeng Ma, Jun Du, Jianshu Zhang, Quan Liu, Jianqing Gao, Feng Ma,
- Abstract summary: We propose GeoGen, a pipeline that can automatically generate step-wise reasoning paths for geometry diagrams.<n>By leveraging the precise symbolic reasoning, textbfGeoGen produces large-scale, high-quality question-answer pairs.<n>We train textbfGeoLogic, a Large Language Model (LLM), using synthetic data generated by GeoGen.
- Score: 57.95306827012784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in Multimodal Large Language Models (MLLMs) have achieved remarkable progress in general domains and demonstrated promise in multimodal mathematical reasoning. However, applying MLLMs to geometry problem solving (GPS) remains challenging due to lack of accurate step-by-step solution data and severe hallucinations during reasoning. In this paper, we propose GeoGen, a pipeline that can automatically generates step-wise reasoning paths for geometry diagrams. By leveraging the precise symbolic reasoning, \textbf{GeoGen} produces large-scale, high-quality question-answer pairs. To further enhance the logical reasoning ability of MLLMs, we train \textbf{GeoLogic}, a Large Language Model (LLM) using synthetic data generated by GeoGen. Serving as a bridge between natural language and symbolic systems, GeoLogic enables symbolic tools to help verifying MLLM outputs, making the reasoning process more rigorous and alleviating hallucinations. Experimental results show that our approach consistently improves the performance of MLLMs, achieving remarkable results on benchmarks for geometric reasoning tasks. This improvement stems from our integration of the strengths of LLMs and symbolic systems, which enables a more reliable and interpretable approach for the GPS task. Codes are available at https://github.com/ycpNotFound/GeoGen.
Related papers
- GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning [20.399408869403437]
Geometry problem-solving (GPS) is a challenging task requiring both visual comprehension and symbolic reasoning.<n>Existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in large language models.<n>We introduce GeoSense, the first comprehensive bilingual benchmark designed to evaluate the geometric reasoning abilities of MLLMs.
arXiv Detail & Related papers (2025-04-17T02:46:27Z) - OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.<n>We propose a MLLM (OmniGeo) tailored to geospatial applications.<n>By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - An LLM Agent for Automatic Geospatial Data Analysis [5.842462214442362]
Large language models (LLMs) are being used in data science code generation tasks.
Their application to geospatial data processing is challenging due to difficulties in incorporating complex data structures and spatial constraints.
We introduce GeoAgent, a new interactive framework designed to help LLMs handle geospatial data processing more effectively.
arXiv Detail & Related papers (2024-10-24T14:47:25Z) - GeoCoder: Solving Geometry Problems by Generating Modular Code through Vision-Language Models [10.443672399225983]
Vision-parametric models (VLMs) have made significant progress in various multimodal tasks.
They still struggle with geometry problems and are significantly limited by their inability to perform mathematical operations not seen during pre-training.
We present GeoCoder, which leverages modular code-finetuning to generate and execute code using a predefined geometry function library.
arXiv Detail & Related papers (2024-10-17T12:56:52Z) - Diagram Formalization Enhanced Multi-Modal Geometry Problem Solver [11.69164802295844]
We introduce a new framework that integrates visual features, geometric formal language, and natural language representations.
We propose a novel synthetic data approach and create a large-scale geometric dataset, SynthGeo228K, annotated with both formal and natural language captions.
Our framework improves MLLMs' ability to process geometric diagrams and extends their application to open-ended tasks on the formalgeo7k dataset.
arXiv Detail & Related papers (2024-09-06T12:11:06Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - G-LLaVA: Solving Geometric Problem with Multi-Modal Large Language Model [124.68242155098189]
Large language models (LLMs) have shown remarkable proficiency in human-level reasoning and generation capabilities.
G-LLaVA demonstrates exceptional performance in solving geometric problems, significantly outperforming GPT-4-V on the MathVista benchmark with only 7B parameters.
arXiv Detail & Related papers (2023-12-18T17:36:20Z) - Large Language Models as Topological Structure Enhancers for Text-Attributed Graphs [3.5627549694751184]
Large language models (LLMs) have revolutionized the field of natural language processing (NLP)
This work explores how to leverage the information retrieval and text generation capabilities of LLMs to refine/enhance the topological structure of text-attributed graphs (TAGs) under the node classification setting.
arXiv Detail & Related papers (2023-11-24T07:53:48Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
We focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge.
We propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs.
arXiv Detail & Related papers (2021-05-30T12:34:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.