Information scrambling and entanglement in quantum approximate
optimization algorithm circuits
- URL: http://arxiv.org/abs/2301.07445v3
- Date: Thu, 4 Jan 2024 04:05:48 GMT
- Title: Information scrambling and entanglement in quantum approximate
optimization algorithm circuits
- Authors: Chen Qian, Wei-Feng Zhuang, Rui-Cheng Guo, Meng-Jun Hu, Dong E. Liu
- Abstract summary: Variational quantum algorithms are promising for demonstrating quantum advantages in the noisy intermediate-scale quantum (NISQ) era.
We study information scrambling and entanglement in QAOA circuits, respectively, and discover that for a harder problem, more quantum resource is required.
- Score: 9.730534141168752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms, which consist of optimal parameterized
quantum circuits, are promising for demonstrating quantum advantages in the
noisy intermediate-scale quantum (NISQ) era. Apart from classical computational
resources, different kinds of quantum resources have their contributions to the
process of computing, such as information scrambling and entanglement.
Characterizing the relation between the complexity of specific problems and
quantum resources consumed by solving these problems is helpful for us to
understand the structure of VQAs in the context of quantum information
processing. In this work, we focus on the quantum approximate optimization
algorithm (QAOA), which aims to solve combinatorial optimization problems. We
study information scrambling and entanglement in QAOA circuits, respectively,
and discover that for a harder problem, more quantum resource is required for
the QAOA circuit to obtain the solution in most cases. We note that in the
future, our results can be used to benchmark the complexity of quantum
many-body problems by information scrambling or entanglement accumulation in
the computing process.
Related papers
- Quantum Approximate Optimization: A Computational Intelligence Perspective [1.756184965281354]
We introduce quantum computing and variational quantum algorithms (VQAs)
We explain Farhi et al.'s quantum approximate optimization algorithm (Farhi's QAOA)
We discuss connections of QAOA to relevant domains, such as computational learning theory and genetic algorithms.
arXiv Detail & Related papers (2024-07-09T19:40:23Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
We propose and implement a family of quantum-informed recursive optimization (QIRO) algorithms for optimization problems.
Our approach leverages quantum resources to obtain information that is used in problem-specific classical reduction steps.
We use backtracking techniques to further improve the performance of the algorithm without increasing the requirements on the quantum hardware.
arXiv Detail & Related papers (2023-08-25T18:02:06Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
arXiv Detail & Related papers (2023-04-06T12:52:29Z) - Efficient algorithms for quantum information bottleneck [64.67104066707309]
We propose a new and general algorithm for the quantum generalisation of information bottleneck.
Our algorithm excels in the speed and the definiteness of convergence compared with prior results.
Notably, we discover that a quantum system can achieve strictly better performance than a classical system of the same size regarding quantum information bottleneck.
arXiv Detail & Related papers (2022-08-22T14:20:05Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, quantum resources are limited.
We present a resource-efficient quantum algorithm for bosonic ground and excited state computations.
arXiv Detail & Related papers (2021-02-23T19:00:05Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.