論文の概要: Locally-Minimal Probabilistic Explanations
- arxiv url: http://arxiv.org/abs/2312.11831v1
- Date: Tue, 19 Dec 2023 03:45:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 17:12:12.361462
- Title: Locally-Minimal Probabilistic Explanations
- Title(参考訳): 局所最小確率的説明
- Authors: Yacine Izza, Kuldeep S. Meel, Joao Marques-Silva
- Abstract要約: 本稿では,局所最小PXApsの制限に対する新しいアルゴリズムを提案する。
実験の結果,提案アルゴリズムの有効性が示された。
- 参考スコア(独自算出の注目度): 38.16697111182055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Formal abductive explanations offer crucial guarantees of rigor and so are of
interest in high-stakes uses of machine learning (ML). One drawback of
abductive explanations is explanation size, justified by the cognitive limits
of human decision-makers. Probabilistic abductive explanations (PAXps) address
this limitation, but their theoretical and practical complexity makes their
exact computation most often unrealistic. This paper proposes novel efficient
algorithms for the computation of locally-minimal PXAps, which offer
high-quality approximations of PXAps in practice. The experimental results
demonstrate the practical efficiency of the proposed algorithms.
- Abstract(参考訳): 形式的帰納的説明は厳密性の重要な保証を提供するので、機械学習(ML)の高用法に関心がある。
誘惑的な説明の欠点は、人間の意思決定者の認知的限界によって正当化される説明のサイズである。
確率的帰納的説明(PAXps)は、この制限に対処するが、理論的かつ実践的な複雑さは、その正確な計算をしばしば非現実的にする。
本稿では,PXApsの高精度な近似を行うローカル最小PXApsの計算アルゴリズムを提案する。
実験の結果,提案アルゴリズムの有効性が示された。
関連論文リスト
- Distance-Restricted Explanations: Theoretical Underpinnings & Efficient Implementation [19.22391463965126]
機械学習(ML)のいくつかの用途には、高い評価と安全性クリティカルなアプリケーションが含まれる。
本稿では,論理ベースの説明器の性能向上のための新しいアルゴリズムについて検討する。
論文 参考訳(メタデータ) (2024-05-14T03:42:33Z) - How Well Do Feature-Additive Explainers Explain Feature-Additive
Predictors? [12.993027779814478]
LIME、SHAP、SHAPR、MAPLE、PDPといった人気機能付加型推論器は、機能付加型予測器を説明できるだろうか?
本稿では,モデルの加法構造から解析的に導出される基底真理について,そのような説明を行う。
以上の結果から,全ての説明者が機能の重要性を正しく評価できないことが示唆された。
論文 参考訳(メタデータ) (2023-10-27T21:16:28Z) - On Explainability in AI-Solutions: A Cross-Domain Survey [4.394025678691688]
システムモデルを自動的に導出する際、AIアルゴリズムは人間には検出できないデータで関係を学習する。
モデルが複雑になればなるほど、人間が意思決定の理由を理解するのが難しくなる。
この研究は、この話題に関する広範な文献調査を提供し、その大部分は、他の調査から成っている。
論文 参考訳(メタデータ) (2022-10-11T06:21:47Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
我々は,知識外挿の新たな視点から,対実合成を研究する。
本稿では, 知識外挿問題に対処するために, クローズド形式判別器を用いた対角ゲームが利用可能であることを示す。
提案手法は,多くのシナリオにおいて,エレガントな理論的保証と優れた性能の両方を享受する。
論文 参考訳(メタデータ) (2022-05-21T08:39:42Z) - A Turing Test for Transparency [0.0]
説明可能な人工知能(XAI)の中心的な目標は、人間とAIのインタラクションにおける信頼関係を改善することである。
最近の実証的な証拠は、説明が反対の効果を持つことを示している。
この効果はXAIの目的に挑戦し、透明なAI手法の責任ある使用には、人間が人間の説明から生成された機械を区別する能力を考慮する必要があることを示唆している。
論文 参考訳(メタデータ) (2021-06-21T20:09:40Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and
Execution [97.50813120600026]
時空間推論は人工知能(AI)の課題である
最近の研究は、この種の抽象的推論タスクに焦点を当てている -- Raven's Progressive Matrices (RPM)
ニューロシンボリックな確率的アブダクションと実行学習者(PrAE)を提案する。
論文 参考訳(メタデータ) (2021-03-26T02:42:18Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z) - Deceptive AI Explanations: Creation and Detection [3.197020142231916]
我々は、AIモデルを用いて、偽りの説明を作成し、検出する方法について検討する。
実験的な評価として,GradCAMによるテキスト分類と説明の変更に着目した。
被験者200名を対象に, 偽装説明がユーザに与える影響について検討した。
論文 参考訳(メタデータ) (2020-01-21T16:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。