Active contours driven by local and global intensity fitting energy with
application to SAR image segmentation and its fast solvers
- URL: http://arxiv.org/abs/2312.11849v1
- Date: Tue, 19 Dec 2023 04:34:15 GMT
- Title: Active contours driven by local and global intensity fitting energy with
application to SAR image segmentation and its fast solvers
- Authors: Guangming Liu, Qi Liu, Jing Liang, Quanying Sun
- Abstract summary: We propose a novel variational active contour model based on Aubert-Aujol (AA) denoising model, which hybrides geodesic active contour (GAC) model with active contours without edges (ACWE) model.
Inspired by a fast denosing algorithm proposed by Jia-Zhao recently, we propose two fast fixed point algorithms to solve SAR image segmentation question.
- Score: 6.965119490863576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel variational active contour model based on
Aubert-Aujol (AA) denoising model, which hybrides geodesic active contour (GAC)
model with active contours without edges (ACWE) model and can be used to
segment images corrupted by multiplicative gamma noise. We transform the
proposed model into classic ROF model by adding a proximity term. Inspired by a
fast denosing algorithm proposed by Jia-Zhao recently, we propose two fast
fixed point algorithms to solve SAR image segmentation question. Experimental
results for real SAR images show that the proposed image segmentation model can
efficiently stop the contours at weak or blurred edges, and can automatically
detect the exterior and interior boundaries of images with multiplicative gamma
noise. The proposed fast fixed point algorithms are robustness to
initialization contour, and can further reduce about 15% of the time needed for
algorithm proposed by Goldstein-Osher.
Related papers
- Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation [7.314877483509877]
Shape compactness is a key geometrical property to describe interesting regions in many image segmentation tasks.
We propose two novel algorithms to solve the introduced image segmentation problem that incorporates a shape-compactness prior.
The proposed algorithms significantly improve IoU by 20% training on a highly noisy image dataset.
arXiv Detail & Related papers (2024-05-23T11:05:35Z) - A locally statistical active contour model for SAR image segmentation
can be solved by denoising algorithms [6.965119490863576]
Experimental results for real SAR images show that the proposed image segmentation model can efficiently stop the contours at weak or blurred edges.
The proposed FPRD1/FPRD2 models are about 1/2 (or less than) of the time required for the SBRD model based on the Split Bregman technique.
arXiv Detail & Related papers (2024-01-10T00:27:14Z) - SAR image segmentation algorithms based on I-divergence-TV model [0.7458485930898191]
We propose a novel variational active contour model based on I-divergence-TV model to segment Synthetic aperture radar (SAR) images with multiplicative gamma noise.
The proposed model can efficiently stop the contours at weak or blurred edges, and can automatically detect the exterior and interior boundaries of images.
arXiv Detail & Related papers (2023-12-09T04:14:46Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Saliency-Driven Active Contour Model for Image Segmentation [2.8348950186890467]
We propose a novel model that uses the advantages of a saliency map with local image information (LIF) and overcomes the drawbacks of previous models.
The proposed model is driven by a saliency map of an image and the local image information to enhance the progress of the active contour models.
arXiv Detail & Related papers (2022-05-23T06:02:52Z) - An Active Contour Model with Local Variance Force Term and Its Efficient
Minimization Solver for Multi-phase Image Segmentation [2.935661780430872]
We propose an active contour model with a local variance force (LVF) term that can be applied to multi-phase image segmentation problems.
With the LVF, the proposed model is very effective in the segmentation of images with noise.
arXiv Detail & Related papers (2022-03-17T02:32:30Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Deep Blind Video Super-resolution [85.79696784460887]
We propose a deep convolutional neural network (CNN) model to solve video SR by a blur kernel modeling approach.
The proposed CNN model consists of motion blur estimation, motion estimation, and latent image restoration modules.
We show that the proposed algorithm is able to generate clearer images with finer structural details.
arXiv Detail & Related papers (2020-03-10T13:43:24Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.