論文の概要: Identification of Causal Structure with Latent Variables Based on Higher
Order Cumulants
- arxiv url: http://arxiv.org/abs/2312.11934v1
- Date: Tue, 19 Dec 2023 08:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 16:39:13.052939
- Title: Identification of Causal Structure with Latent Variables Based on Higher
Order Cumulants
- Title(参考訳): 高次累積量に基づく潜在変数による因果構造の同定
- Authors: Wei Chen, Zhiyi Huang, Ruichu Cai, Zhifeng Hao, Kun Zhang
- Abstract要約: 本稿では,潜伏変数の影響を受ける2つの変数間の因果エッジの存在を同定するための新しい手法を提案する。
このような因果エッジが流出した場合、因果方向を決定するための非対称性基準を導入する。
- 参考スコア(独自算出の注目度): 31.85295338809117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery with latent variables is a crucial but challenging task.
Despite the emergence of numerous methods aimed at addressing this challenge,
they are not fully identified to the structure that two observed variables are
influenced by one latent variable and there might be a directed edge in
between. Interestingly, we notice that this structure can be identified through
the utilization of higher-order cumulants. By leveraging the higher-order
cumulants of non-Gaussian data, we provide an analytical solution for
estimating the causal coefficients or their ratios. With the estimated (ratios
of) causal coefficients, we propose a novel approach to identify the existence
of a causal edge between two observed variables subject to latent variable
influence. In case when such a causal edge exits, we introduce an asymmetry
criterion to determine the causal direction. The experimental results
demonstrate the effectiveness of our proposed method.
- Abstract(参考訳): 潜在変数による因果的発見は重要だが困難なタスクである。
この課題に対処するために多くの方法が登場したにもかかわらず、2つの観測変数が1つの潜在変数に影響され、その間に有向エッジが存在するという構造を完全には特定できない。
興味深いことに、この構造は高次累積体の利用によって識別できる。
非ガウスデータの高次累積を活用し、因果係数またはそれらの比率を推定するための解析解を提供する。
因果係数の推定(比)を用いて,潜在変数の影響を受ける2つの観測変数間の因果縁の存在を同定する新しい手法を提案する。
このような因果エッジが流出した場合、因果方向を決定するための非対称性基準を導入する。
実験の結果,提案手法の有効性が示された。
関連論文リスト
- A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables [28.51579090194802]
因果ネットワークの至る所で、因果関係の隠れ変数の存在を許容する因果発見のための新しい枠組みを提案する。
ランクに基づく潜在因果探索アルゴリズム(RLCD)を開発し、隠れ変数を効率よく探索し、その濃度を判定し、測定値と隠れ変数の両方に対して因果構造全体を発見する。
合成・実世界のパーソナリティデータセットを用いた実験結果から,有限サンプルケースにおける提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-12-18T07:57:39Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [85.67870425656368]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Weight-variant Latent Causal Models [79.79711624326299]
因果表現学習は、低レベルの観測の背後にある潜伏した高レベルの因果変数を明らかにする。
本研究では,潜伏因果変数の同定に焦点をあてる。
推移性は潜伏因果変数の識別性を著しく阻害することを示す。
本稿では,潜時因果変数を直接学習する構造式caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
本研究では,観測データ分布に特徴的フットプリントが残っており,突発的・因果的影響を解消できることを示す。
汎用ソルバで実装し,高次元問題へのスケールアップが可能なスコアベース因果検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-28T11:07:59Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Causal discovery of linear non-Gaussian acyclic models in the presence
of latent confounders [6.1221613913018675]
本稿では,反復因果探索 (RCD) と呼ばれる因果関数モデルに基づく手法を提案する。
RCDは、少数の観測変数間で因果方向を推論し、その関係が潜伏した共同設立者の影響を受けているかどうかを判定する。
論文 参考訳(メタデータ) (2020-01-13T12:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。