Active Preference Inference using Language Models and Probabilistic Reasoning
- URL: http://arxiv.org/abs/2312.12009v2
- Date: Wed, 26 Jun 2024 15:00:52 GMT
- Title: Active Preference Inference using Language Models and Probabilistic Reasoning
- Authors: Wasu Top Piriyakulkij, Volodymyr Kuleshov, Kevin Ellis,
- Abstract summary: We introduce an inference-time algorithm that helps large language models infer user preferences.
Our algorithm uses a probabilistic model whose conditional distributions are defined by prompting an LLM.
Results in a simplified interactive web shopping setting with real product items show that an LLM equipped with our entropy reduction algorithm outperforms baselines.
- Score: 13.523369679010685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Actively inferring user preferences, for example by asking good questions, is important for any human-facing decision-making system. Active inference allows such systems to adapt and personalize themselves to nuanced individual preferences. To enable this ability for instruction-tuned large language models (LLMs), one may prompt them to ask users questions to infer their preferences, transforming the language models into more robust, interactive systems. However, out of the box, these models are not efficient at extracting preferences: the questions they generate are not informative, requiring a high number of user interactions and impeding the usability of the downstream system. In this work, we introduce an inference-time algorithm that helps LLMs quickly infer preferences by using more informative questions. Our algorithm uses a probabilistic model whose conditional distributions are defined by prompting an LLM, and returns questions that optimize expected entropy and expected model change. Results in a simplified interactive web shopping setting with real product items show that an LLM equipped with our entropy reduction algorithm outperforms baselines with the same underlying LLM on task performance while using fewer user interactions.
Related papers
- QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - Bayesian Preference Elicitation with Language Models [82.58230273253939]
We introduce OPEN, a framework that uses BOED to guide the choice of informative questions and an LM to extract features.
In user studies, we find that OPEN outperforms existing LM- and BOED-based methods for preference elicitation.
arXiv Detail & Related papers (2024-03-08T18:57:52Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
Large language models (LLMs) have demonstrated remarkable intelligence in understanding, reasoning, and instruction following.
This paper presents the initial exploration of using LLMs as surrogate models to explain black-box recommender models.
To facilitate an effective alignment, we introduce three methods: behavior alignment, intention alignment, and hybrid alignment.
arXiv Detail & Related papers (2023-11-18T03:05:43Z) - Integrating Summarization and Retrieval for Enhanced Personalization via
Large Language Models [11.950478880423733]
Personalization is an essential factor in user experience with natural language processing (NLP) systems.
With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences.
We propose a novel summary-augmented personalization with task-aware user summaries generated by LLMs.
arXiv Detail & Related papers (2023-10-30T23:40:41Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - PALR: Personalization Aware LLMs for Recommendation [7.407353565043918]
PALR aims to combine user history behaviors (such as clicks, purchases, ratings, etc.) with large language models (LLMs) to generate user preferred items.
Our solution outperforms state-of-the-art models on various sequential recommendation tasks.
arXiv Detail & Related papers (2023-05-12T17:21:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.