論文の概要: UnionDet: Union-Level Detector Towards Real-Time Human-Object
Interaction Detection
- arxiv url: http://arxiv.org/abs/2312.12664v1
- Date: Tue, 19 Dec 2023 23:34:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 17:27:38.674364
- Title: UnionDet: Union-Level Detector Towards Real-Time Human-Object
Interaction Detection
- Title(参考訳): UnionDet: リアルタイムヒューマンオブジェクトインタラクション検出を目指すUnion-Level Detector
- Authors: Bumsoo Kim, Taeho Choi, Jaewoo Kang, Hyunwoo J. Kim
- Abstract要約: 本稿では,新しい結合レベル検出器を用いたHOI検出のための一段階メタアーキテクチャを提案する。
ヒトと物体の相互作用の1段階検出器は、相互作用予測時間4x14xを著しく減少させる。
- 参考スコア(独自算出の注目度): 35.2385914946471
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep neural networks have achieved significant progress in
detecting individual objects from an image. However, object detection is not
sufficient to fully understand a visual scene. Towards a deeper visual
understanding, the interactions between objects, especially humans and objects
are essential. Most prior works have obtained this information with a bottom-up
approach, where the objects are first detected and the interactions are
predicted sequentially by pairing the objects. This is a major bottleneck in
HOI detection inference time. To tackle this problem, we propose UnionDet, a
one-stage meta-architecture for HOI detection powered by a novel union-level
detector that eliminates this additional inference stage by directly capturing
the region of interaction. Our one-stage detector for human-object interaction
shows a significant reduction in interaction prediction time 4x~14x while
outperforming state-of-the-art methods on two public datasets: V-COCO and
HICO-DET.
- Abstract(参考訳): ディープニューラルネットワークの最近の進歩は、画像から個々の物体を検出することに大きく進歩している。
しかし、物体検出は視覚シーンを完全に理解するには不十分である。
より深い視覚的理解に向けて、物体、特に人間と物体の相互作用は不可欠である。
ほとんどの先行研究はこの情報をボトムアップアプローチで取得し、まずオブジェクトを検出し、オブジェクトのペアリングによって対話を逐次予測する。
これはHOI検出推定時間における大きなボトルネックである。
この問題に対処するために,新たなユニオンレベル検出器を用いたHOI検出のための一段階メタアーキテクチャであるUnionDetを提案する。
V-COCO と HICO-DET という2つの公開データセット上での最先端の手法よりも優れている一方で, 相互作用予測時間 4x~14x の大幅な削減が見られた。
関連論文リスト
- Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - HODN: Disentangling Human-Object Feature for HOI Detection [51.48164941412871]
本稿では,Human and Object Disentangling Network (HODN) を提案し,Human-Object Interaction (HOI) の関係を明示的にモデル化する。
インタラクションに人間的特徴がより寄与していることを考慮し,インタラクションデコーダが人間中心の領域に焦点を当てていることを確認するためのヒューマンガイドリンク手法を提案する。
提案手法は,V-COCOとHICO-Det Linkingデータセットの競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-20T04:12:50Z) - Distance Matters in Human-Object Interaction Detection [22.3445174577181]
HOI検出における遠隔操作をよりよく扱うための新しい2段階手法を提案する。
我々の手法における重要な構成要素は、Far Near Distance Attentionモジュールである。
さらに,距離認識損失関数(Distance-Aware loss function)を考案した。
論文 参考訳(メタデータ) (2022-07-05T08:06:05Z) - Exploiting Scene Graphs for Human-Object Interaction Detection [81.49184987430333]
ヒューマン・オブジェクト・インタラクション(Human-Object Interaction,HOI)検出は、人間とオブジェクト間のインタラクションのローカライズと認識を目的とした、基本的な視覚的タスクである。
そこで本研究では,シーングラフを用いたヒューマン・オブジェクト・インタラクション(SG2HOI)検出タスクのための新しい手法を提案する。
SG2HOIはSG情報を2つの方法で組み込む:(1)シーングラフを世界的文脈の手がかりに埋め込み、シーン固有の環境コンテキストとして機能し、(2)オブジェクトの近傍から関係を収集し、それらを対話に転送するリレーショナル・アウェア・メッセージ・パッシング・モジュールを構築する。
論文 参考訳(メタデータ) (2021-08-19T09:40:50Z) - HOTR: End-to-End Human-Object Interaction Detection with Transformers [26.664864824357164]
そこで本研究では, HOTRが提唱する, 画像からヒト, オブジェクト, 相互作用> トリプレットの集合を直接予測する新しいフレームワークを提案する。
提案アルゴリズムは,2つのHOI検出ベンチマークにおいて,オブジェクト検出後1ms以下の推論時間で最新の性能を実現する。
論文 参考訳(メタデータ) (2021-04-28T10:10:29Z) - Detecting Human-Object Interaction via Fabricated Compositional Learning [106.37536031160282]
ヒューマンオブジェクトインタラクション(HOI)検出は、高レベルのシーン理解のための基本的なタスクです。
人間は珍しいまたは見えないHOIのサンプルを認識する非常に強力な構成知覚能力があります。
オープン長尾HOI検出の課題を解決するために,FCL(Fabricated Compositional Learning)を提案する。
論文 参考訳(メタデータ) (2021-03-15T08:52:56Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
人-物間相互作用(HOI)検出の課題に対処する。
既存の方法は、人間と物体の対の相互作用を独立に認識するか、複雑な外観に基づく共同推論を行う。
本稿では,抽象的空間意味表現を活用して,各対象対を記述し,二重関係グラフを用いてシーンの文脈情報を集約する。
論文 参考訳(メタデータ) (2020-08-26T17:59:40Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
本研究では,人間と物体の相互作用を直接検出する新しい完全畳み込み手法を提案する。
我々のネットワークは相互作用点を予測し、その相互作用を直接ローカライズし、分類する。
V-COCOとHICO-DETの2つの人気のあるベンチマークで実験が行われる。
論文 参考訳(メタデータ) (2020-03-31T08:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。