Progressive Poisoned Data Isolation for Training-time Backdoor Defense
- URL: http://arxiv.org/abs/2312.12724v1
- Date: Wed, 20 Dec 2023 02:40:28 GMT
- Title: Progressive Poisoned Data Isolation for Training-time Backdoor Defense
- Authors: Yiming Chen, Haiwei Wu, and Jiantao Zhou
- Abstract summary: Deep Neural Networks (DNN) are susceptible to backdoor attacks where malicious attackers manipulate the model's predictions via data poisoning.
In this study, we present a novel and efficacious defense method, termed Progressive Isolation of Poisoned Data (PIPD)
Our PIPD achieves an average True Positive Rate (TPR) of 99.95% and an average False Positive Rate (FPR) of 0.06% for diverse attacks over CIFAR-10 dataset.
- Score: 23.955347169187917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNN) are susceptible to backdoor attacks where
malicious attackers manipulate the model's predictions via data poisoning. It
is hence imperative to develop a strategy for training a clean model using a
potentially poisoned dataset. Previous training-time defense mechanisms
typically employ an one-time isolation process, often leading to suboptimal
isolation outcomes. In this study, we present a novel and efficacious defense
method, termed Progressive Isolation of Poisoned Data (PIPD), that
progressively isolates poisoned data to enhance the isolation accuracy and
mitigate the risk of benign samples being misclassified as poisoned ones. Once
the poisoned portion of the dataset has been identified, we introduce a
selective training process to train a clean model. Through the implementation
of these techniques, we ensure that the trained model manifests a significantly
diminished attack success rate against the poisoned data. Extensive experiments
on multiple benchmark datasets and DNN models, assessed against nine
state-of-the-art backdoor attacks, demonstrate the superior performance of our
PIPD method for backdoor defense. For instance, our PIPD achieves an average
True Positive Rate (TPR) of 99.95% and an average False Positive Rate (FPR) of
0.06% for diverse attacks over CIFAR-10 dataset, markedly surpassing the
performance of state-of-the-art methods.
Related papers
- Reliable Poisoned Sample Detection against Backdoor Attacks Enhanced by Sharpness Aware Minimization [38.957943962546864]
We propose to train one model using the Sharpness-Aware Minimization (SAM) algorithm, rather than the vanilla training algorithm.
Extensive experiments on several benchmark datasets show the reliable detection performance of the proposed method against both weak and strong backdoor attacks.
arXiv Detail & Related papers (2024-11-18T12:35:08Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - Have You Poisoned My Data? Defending Neural Networks against Data Poisoning [0.393259574660092]
We propose a novel approach to detect and filter poisoned datapoints in the transfer learning setting.
We show that effective poisons can be successfully differentiated from clean points in the characteristic vector space.
Our evaluation shows that our proposal outperforms existing approaches in defense rate and final trained model performance.
arXiv Detail & Related papers (2024-03-20T11:50:16Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
Attacks on deep learning models with malicious training samples are known as data poisoning.
Recent advances in defense strategies against data poisoning have highlighted the effectiveness of aggregation schemes in achieving certified poisoning robustness.
Here we focus on Deep Partition Aggregation, a representative aggregation defense, and assess its practical aspects, including efficiency, performance, and robustness.
arXiv Detail & Related papers (2023-06-28T17:59:35Z) - Backdoor Attacks Against Dataset Distillation [24.39067295054253]
This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain.
We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING.
Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases.
arXiv Detail & Related papers (2023-01-03T16:58:34Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
Trajectory prediction using deep neural networks (DNNs) is an essential component of autonomous driving systems.
These methods are vulnerable to adversarial attacks, leading to serious consequences such as collisions.
In this work, we identify two key ingredients to defend trajectory prediction models against adversarial attacks.
arXiv Detail & Related papers (2022-07-29T22:35:05Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
We show that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
Our work validates that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
arXiv Detail & Related papers (2021-06-18T08:29:53Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.