Single-photon manipulations based on optically-controlled chiral
couplings in waveguide structures of Rydberg giant atoms
- URL: http://arxiv.org/abs/2312.12733v1
- Date: Wed, 20 Dec 2023 03:11:20 GMT
- Title: Single-photon manipulations based on optically-controlled chiral
couplings in waveguide structures of Rydberg giant atoms
- Authors: Yao-Tong Chen, Lei Du, Zhihai Wang, M. Artoni, G. C. La Rocca, and
Jin-Hui Wu
- Abstract summary: Two interacting Rydberg atoms coupled to a waveguide realize a giant-atom platform that exhibits controllable (phase-dependent) chirality.
Our results suggest an extendable giant-atom platform that is both innovative and promising for chiral quantum optics and tunable frequency conversion in the optical domain.
- Score: 2.812054743486646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two interacting Rydberg atoms coupled to a waveguide realize a giant-atom
platform that exhibits the controllable (phase-dependent) chirality where the
direction of nonreciprocal photon scattering can be switched on demand, e.g.,
by the geometrical tuning of an external driving field. At variance with
previous chiral setups, the simplified approach of our proposed platform arises
from an optical implementation of the local phase difference between two
coupling points of the Rydberg giant atom. Furthermore, employing two or more
driving fields, this platform could also be used as a frequency converter with
its efficiency exhibiting a strong asymmetry and being significantly enhanced
via the chiral couplings. Our results suggest an extendable giant-atom platform
that is both innovative and promising for chiral quantum optics and tunable
frequency conversion in the optical domain.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Single-photon scattering in giant-atom topological-waveguide-QED systems [1.2479554210753663]
We study single-photon scattering in a Su-Schrieffer-Heeger (SSH) waveguide coupled to either one or two two-level giant atoms.
We find that a single photon in the SSH waveguide can be completely reflected or transmitted by choosing proper coupling configurations.
This work will inspire the development of controllable single-photon devices based on the giant-atom topological-waveguide-QED systems.
arXiv Detail & Related papers (2024-08-26T10:57:23Z) - Nonlinear chiral quantum optics with giant-emitter pairs [9.045697677452061]
We propose a setup which combines giant emitters (coupling to light at multiple points separated by wavelength distances) with nonlinear quantum optics and its correlated photons.
We show that the proposed setup can provide directional quantum many-body resources, and can be configured as a building block for a chiral quantum network with correlated flying qubits''
Our findings point toward a rich landscape of tailoring multiphoton propagation and correlation properties by exploiting interference effects of giant emitters coupling to nonlinear photonic baths.
arXiv Detail & Related papers (2024-04-15T14:26:25Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Chiral and nonreciprocal single-photon scattering in a
chiral-giant-molecule waveguide-QED system [0.3621816213357969]
We study chiral and nonreciprocal single-photon scattering in a chiral-giant-molecule waveguide-QED system.
In the non-Markovian regime, the scattering spectra are characterized by more abundant structures with multiple peaks and dips.
Our results have potential applications in the design of optical quantum devices involving giant atoms.
arXiv Detail & Related papers (2023-06-19T14:19:46Z) - Single-photon scattering in a giant-molecule waveguide-QED system [5.826796031213696]
We study the coherent single-photon scattering in a one-dimensional waveguide coupled to a giant artificial molecule consisting of two coupled giant atoms.
We obtain the exact expressions of the single-photon transmission and reflection amplitudes with the real-space approach.
This paper will pave the way for the study of controllable single-photon devices based on the giant-molecule waveguide-QED systems.
arXiv Detail & Related papers (2022-03-15T12:01:03Z) - Engineering symmetry-selective couplings of a superconducting artificial
molecule to microwave waveguides [0.0]
We demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits, and two microwave waveguides.
We show that this coupling arrangement makes it possible to straightforwardly generate spatially-separated Bell states propagating across the waveguides.
We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.
arXiv Detail & Related papers (2022-02-24T17:16:11Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.