論文の概要: Fast Cell Library Characterization for Design Technology Co-Optimization Based on Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2312.12784v4
- Date: Tue, 19 Mar 2024 08:06:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 23:51:29.411500
- Title: Fast Cell Library Characterization for Design Technology Co-Optimization Based on Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークに基づく設計技術の協調最適化のための高速セルライブラリー評価
- Authors: Tianliang Ma, Guangxi Fan, Zhihui Deng, Xuguang Sun, Kainlu Low, Leilai Shao,
- Abstract要約: 設計技術の共同最適化(DTCO)は、最適パワー、性能、領域を達成する上で重要な役割を果たす。
本稿では,高速かつ正確なセルライブラリ解析のためのグラフニューラルネットワーク(GNN)に基づく機械学習モデルを提案する。
- 参考スコア(独自算出の注目度): 0.1752969190744922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Design technology co-optimization (DTCO) plays a critical role in achieving optimal power, performance, and area (PPA) for advanced semiconductor process development. Cell library characterization is essential in DTCO flow, but traditional methods are time-consuming and costly. To overcome these challenges, we propose a graph neural network (GNN)-based machine learning model for rapid and accurate cell library characterization. Our model incorporates cell structures and demonstrates high prediction accuracy across various process-voltage-temperature (PVT) corners and technology parameters. Validation with 512 unseen technology corners and over one million test data points shows accurate predictions of delay, power, and input pin capacitance for 33 types of cells, with a mean absolute percentage error (MAPE) $\le$ 0.95% and a speed-up of 100X compared with SPICE simulations. Additionally, we investigate system-level metrics such as worst negative slack (WNS), leakage power, and dynamic power using predictions obtained from the GNN-based model on unseen corners. Our model achieves precise predictions, with absolute error $\le$3.0 ps for WNS, percentage errors $\le$0.60% for leakage power, and $\le$0.99% for dynamic power, when compared to golden reference. With the developed model, we further proposed a fine-grained drive strength interpolation methodology to enhance PPA for small-to-medium-scale designs, resulting in an approximate 1-3% improvement.
- Abstract(参考訳): 設計技術共最適化(DTCO)は、半導体プロセス開発における最適電力、性能、面積(PPA)を達成する上で重要な役割を担っている。
細胞ライブラリーのキャラクタリゼーションはDTCOフローに不可欠であるが、従来の手法は時間と費用がかかる。
これらの課題を克服するため,我々は,高速かつ正確なセルライブラリ解析のためのグラフニューラルネットワーク(GNN)に基づく機械学習モデルを提案する。
本モデルでは, セル構造を取り入れ, 様々なプロセス電圧温度コーナーおよび技術パラメータにわたって高い予測精度を示す。
512の技術コーナーと100万以上のテストデータポイントによる検証は、平均絶対パーセンテージ誤差(MAPE)0.95%、SPICEシミュレーションと比較して100倍の速度で、33種類のセルの遅延、電力、入力ピン容量の正確な予測を示している。
さらに、GNNモデルから得られた予測値を用いて、最悪の負スラック(WNS)、リーク電力、動的電力などのシステムレベルの指標について検討する。
我々のモデルは、WNSに対して絶対誤差$\le$3.0 ps、リーク電力に対して$\le$0.60%、ゴールデンレファレンスと比較して$$\le$0.99%という正確な予測を行う。
さらに, 小型・中規模設計におけるPPA向上のための微粒化駆動強度補間法を提案し, ほぼ1-3%の改善を実現した。
関連論文リスト
- Improving the performance of Stein variational inference through extreme sparsification of physically-constrained neural network models [0.815557531820863]
スタイン変分勾配降下(L_$+SVGD)がより堅牢で効率的な不確実性の定量化手段であることを示す。
具体的には、$L_$+SVGDは、ノイズに対する優れたレジリエンス、外挿領域での良好な性能、最適解へのより高速な収束率を示す。
論文 参考訳(メタデータ) (2024-06-30T16:50:11Z) - YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
伝統的な手法は複雑な分子構造を見逃し、不正確な結果をもたらすことが多い。
本稿では,グラフ畳み込みネットワーク(GCN),トランスフォーマーアーキテクチャ,Long Short-Term Memory(LSTM)ネットワークを統合するディープラーニングフレームワークであるYZS-Modelを紹介する。
YZS-Modelは、R2$ 0.59、RMSE$ 0.57を達成し、ベンチマークモデルを上回った。
論文 参考訳(メタデータ) (2024-06-27T12:40:29Z) - GNN4REL: Graph Neural Networks for Predicting Circuit Reliability
Degradation [7.650966670809372]
我々はグラフニューラルネットワーク(GNN)を用いて、プロセスの変動とデバイス老化が回路内の任意の経路の遅延に与える影響を正確に推定する。
GNN4RELは、工業用14nm計測データに対して校正されたFinFET技術モデルに基づいて訓練されている。
我々は、平均絶対誤差を0.01ポイントまで下げて、全経路(特に数秒以内)の遅延劣化をうまく見積もった。
論文 参考訳(メタデータ) (2022-08-04T20:09:12Z) - Single-Shot Optical Neural Network [55.41644538483948]
深層ニューラルネットワークに必要な計算資源を削減するために,「重定常」アナログ光学・電子ハードウェアが提案されている。
我々は、スケーラブルで1層当たり単発の重み付き光学プロセッサを提案する。
論文 参考訳(メタデータ) (2022-05-18T17:49:49Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Physics-enhanced deep surrogates for partial differential equations [30.731686639510517]
本稿では, 複雑な物理系のための高速サロゲートモデル開発に向けて, 物理強化ディープサロゲート(PEDS)アプローチを提案する。
具体的には,低忠実で説明可能な物理シミュレータとニューラルネットワークジェネレータの組み合わせを提案する。
論文 参考訳(メタデータ) (2021-11-10T18:43:18Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
ディセンス光学フロー推定は、多くのロボットビジョンタスクで重要な役割を果たしています。
現在のネットワークはしばしば多くのパラメータを占有し、計算コストがかかる。
提案したFastFlowNetは、周知の粗大なやり方で、以下のイノベーションで機能する。
論文 参考訳(メタデータ) (2021-03-08T03:09:37Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
本稿では,高精度かつ高効率な人間のポーズ推定について述べる。
我々は、最先端技術よりも精度と効率を両立させる文脈において、この設計選択を再分析する。
本モデルでは,MPII と LSP のデータセットから最先端の結果が得られる。
論文 参考訳(メタデータ) (2020-02-25T18:51:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。