Effect Size Estimation for Duration Recommendation in Online Experiments: Leveraging Hierarchical Models and Objective Utility Approaches
- URL: http://arxiv.org/abs/2312.12871v2
- Date: Wed, 17 Apr 2024 23:56:20 GMT
- Title: Effect Size Estimation for Duration Recommendation in Online Experiments: Leveraging Hierarchical Models and Objective Utility Approaches
- Authors: Yu Liu, Runzhe Wan, James McQueen, Doug Hains, Jinxiang Gu, Rui Song,
- Abstract summary: The selection of the assumed effect size (AES) critically determines the duration of an experiment, and hence its accuracy and efficiency.
Traditionally, experimenters determine AES based on domain knowledge, but this method becomes impractical for online experimentation services managing numerous experiments.
We propose two solutions for data-driven AES selection in for online experimentation services.
- Score: 13.504353263032359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The selection of the assumed effect size (AES) critically determines the duration of an experiment, and hence its accuracy and efficiency. Traditionally, experimenters determine AES based on domain knowledge. However, this method becomes impractical for online experimentation services managing numerous experiments, and a more automated approach is hence of great demand. We initiate the study of data-driven AES selection in for online experimentation services by introducing two solutions. The first employs a three-layer Gaussian Mixture Model considering the heteroskedasticity across experiments, and it seeks to estimate the true expected effect size among positive experiments. The second method, grounded in utility theory, aims to determine the optimal effect size by striking a balance between the experiment's cost and the precision of decision-making. Through comparisons with baseline methods using both simulated and real data, we showcase the superior performance of the proposed approaches.
Related papers
- Optimal Adaptive Experimental Design for Estimating Treatment Effect [14.088972921434761]
This paper addresses the fundamental question of determining the optimal accuracy in estimating the treatment effect.
By incorporating the concept of doubly robust method into sequential experimental design, we frame the optimal estimation problem as an online bandit learning problem.
Using tools and ideas from both bandit algorithm design and adaptive statistical estimation, we propose a general low switching adaptive experiment framework.
arXiv Detail & Related papers (2024-10-07T23:22:51Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Adaptive Instrument Design for Indirect Experiments [48.815194906471405]
Unlike RCTs, indirect experiments estimate treatment effects by leveragingconditional instrumental variables.
In this paper we take the initial steps towards enhancing sample efficiency for indirect experiments by adaptively designing a data collection policy.
Our main contribution is a practical computational procedure that utilizes influence functions to search for an optimal data collection policy.
arXiv Detail & Related papers (2023-12-05T02:38:04Z) - A Double Machine Learning Approach to Combining Experimental and Observational Data [59.29868677652324]
We propose a double machine learning approach to combine experimental and observational studies.
Our framework tests for violations of external validity and ignorability under milder assumptions.
arXiv Detail & Related papers (2023-07-04T02:53:11Z) - Task-specific experimental design for treatment effect estimation [59.879567967089145]
Large randomised trials (RCTs) are the standard for causal inference.
Recent work has proposed more sample-efficient alternatives to RCTs, but these are not adaptable to the downstream application for which the causal effect is sought.
We develop a task-specific approach to experimental design and derive sampling strategies customised to particular downstream applications.
arXiv Detail & Related papers (2023-06-08T18:10:37Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - Sequential Bayesian experimental designs via reinforcement learning [0.0]
We provide a new approach Sequential Experimental Design via Reinforcement Learning to construct BED in a sequential manner.
By proposing a new real-world-oriented experimental environment, our approach aims to maximize the expected information gain.
It is confirmed that our method outperforms the existing methods in various indices such as the EIG and sampling efficiency.
arXiv Detail & Related papers (2022-02-14T04:29:04Z) - Demarcating Endogenous and Exogenous Opinion Dynamics: An Experimental
Design Approach [27.975266406080152]
In this paper, we design a suite of unsupervised classification methods based on experimental design approaches.
We aim to select the subsets of events which minimize different measures of mean estimation error.
Our experiments range from validating prediction performance on unsanitized and sanitized events to checking the effect of selecting optimal subsets of various sizes.
arXiv Detail & Related papers (2021-02-11T11:38:15Z) - Efficient Adaptive Experimental Design for Average Treatment Effect
Estimation [18.027128141189355]
We propose an algorithm for efficient experiments with estimators constructed from dependent samples.
To justify our proposed approach, we provide finite and infinite sample analyses.
arXiv Detail & Related papers (2020-02-13T02:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.