論文の概要: MinePlanner: A Benchmark for Long-Horizon Planning in Large Minecraft Worlds
- arxiv url: http://arxiv.org/abs/2312.12891v2
- Date: Sun, 28 Apr 2024 11:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 00:05:37.017766
- Title: MinePlanner: A Benchmark for Long-Horizon Planning in Large Minecraft Worlds
- Title(参考訳): MinePlanner: Minecraftの世界における長期計画のベンチマーク
- Authors: William Hill, Ireton Liu, Anita De Mello Koch, Damion Harvey, Nishanth Kumar, George Konidaris, Steven James,
- Abstract要約: Minecraftゲームに基づくタスク計画のための新しいベンチマークを提案する。
私たちのベンチマークには45のタスクが含まれていますが、新しいMinecraftタスクの命題インスタンスと数値インスタンスの両方を自動生成する機能も備えています。
我々は、これらのタスクに関する数値的および命題的計画システムをベンチマークし、その結果、現在最先端のプランナーは、我々の新しいベンチマークによって進められた多くの課題に対処できないことを示した。
- 参考スコア(独自算出の注目度): 11.185743514537553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new benchmark for planning tasks based on the Minecraft game. Our benchmark contains 45 tasks overall, but also provides support for creating both propositional and numeric instances of new Minecraft tasks automatically. We benchmark numeric and propositional planning systems on these tasks, with results demonstrating that state-of-the-art planners are currently incapable of dealing with many of the challenges advanced by our new benchmark, such as scaling to instances with thousands of objects. Based on these results, we identify areas of improvement for future planners. Our framework is made available at https://github.com/IretonLiu/mine-pddl/.
- Abstract(参考訳): Minecraftゲームに基づくタスク計画のための新しいベンチマークを提案する。
私たちのベンチマークには45のタスクが含まれていますが、新しいMinecraftタスクの命題インスタンスと数値インスタンスの両方を自動生成する機能も備えています。
我々はこれらのタスクに関する数値的および命題的計画システムをベンチマークし、その結果、現在最先端のプランナーは、数千のオブジェクトを持つインスタンスへのスケーリングなど、新しいベンチマークによって進められた多くの課題に対処できないことを示した。
これらの結果に基づき,今後の計画立案者に対する改善の分野を特定する。
私たちのフレームワークはhttps://github.com/IretonLiu/mine-pddl/で利用可能です。
関連論文リスト
- Neural MP: A Generalist Neural Motion Planner [75.82675575009077]
運動計画問題にデータ駆動学習を大規模に適用することで,これを実現する。
提案手法は, シミュレーションの複雑なシーンを多数構築し, モーションプランナーから専門家のデータを収集し, 反応的なジェネラリストポリシーに抽出する。
我々は,4つの異なる環境における64の動作計画タスクについて,その方法の徹底的な評価を行う。
論文 参考訳(メタデータ) (2024-09-09T17:59:45Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
タスク・アンド・モーション・プランニング(タスク・アンド・モーション・プランニング、TAMP)は、自動化された計画問題の解決策を見つけるための問題である。
本稿では,TAMP問題のモデル化とベンチマークを行うための,汎用的でオープンソースのフレームワークを提案する。
移動エージェントと複数のタスク状態依存障害を含むTAMP問題を解決する革新的なメタ技術を導入する。
論文 参考訳(メタデータ) (2024-08-11T14:57:57Z) - Look Further Ahead: Testing the Limits of GPT-4 in Path Planning [9.461626534488117]
大きな言語モデル(LLM)は、様々なタスクで印象的な機能を示している。
提案するベンチマークは,複雑な環境でのパス計画スキルを体系的にテストする。
フレーミングはPythonのコードとして促進され、長い軌道上のタスクを分解することで、GPT-4の経路計画の有効性が向上することがわかった。
論文 参考訳(メタデータ) (2024-06-17T18:12:56Z) - NATURAL PLAN: Benchmarking LLMs on Natural Language Planning [109.73382347588417]
本稿では,3つのタスク – トリップ計画,ミーティング計画,カレンダースケジューリング – を含む,自然言語の現実的な計画ベンチマークであるNATURAL PLANを紹介する。
我々は、Google Flights、Google Maps、Google Calendarなどのツールからの出力を、モデルに対するコンテキストとして提供することによって、タスクに関する完全な情報を備えたLCMの計画能力に焦点をあてる。
論文 参考訳(メタデータ) (2024-06-06T21:27:35Z) - LoTa-Bench: Benchmarking Language-oriented Task Planners for Embodied
Agents [2.8927500190704567]
大規模言語モデル (LLM) はタスク計画のための代替ソリューションとして最近注目されている。
本稿では,ホームサービス実施エージェントのタスクプランニング性能を定量的に評価するベンチマークシステムを提案する。
論文 参考訳(メタデータ) (2024-02-13T02:28:57Z) - AutoPlanBench: Automatically generating benchmarks for LLM planners from
PDDL [52.005042190810116]
PDDLで書かれたベンチマークをテキスト記述に変換する新しい手法であるAutoPlanBenchを提案する。
優れたLCMプランナーは計画タスクをうまくこなすが、他のプランナーは現在の手法には及ばない。
論文 参考訳(メタデータ) (2023-11-16T11:55:27Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
本研究では,現場制約を考慮した地上計画のための具体的タスクにおけるTAsk Planing Agent (TaPA)を提案する。
推論の際には,オープンボキャブラリオブジェクト検出器を様々な場所で収集された多視点RGB画像に拡張することにより,シーン内の物体を検出する。
実験の結果,我々のTaPAフレームワークから生成されたプランは,LLaVAやGPT-3.5よりも大きなマージンで高い成功率が得られることがわかった。
論文 参考訳(メタデータ) (2023-07-04T17:58:25Z) - PlanT: Explainable Planning Transformers via Object-Level
Representations [64.93938686101309]
PlanTは、自動運転のコンテキストにおける計画のための新しいアプローチである。
PlanTは、コンパクトなオブジェクトレベルの入力表現を持つ模倣学習に基づいている。
この結果から,PlanTは幾何学的に距離をおいても,現場で最も関連性の高い物体に焦点を合わせることが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-10-25T17:59:46Z) - PlanBench: An Extensible Benchmark for Evaluating Large Language Models
on Planning and Reasoning about Change [34.93870615625937]
PlanBenchは、自動計画コミュニティで使用されるドメインの種類に基づいたベンチマークスイートである。
PlanBenchはタスクドメインと特定の計画機能の両方に十分な多様性を提供します。
論文 参考訳(メタデータ) (2022-06-21T16:15:27Z) - Planning with Learned Object Importance in Large Problem Instances using
Graph Neural Networks [28.488201307961624]
現実の計画問題は、数百から数千ものオブジェクトを巻き込むことが多い。
単一推論パスにおけるオブジェクトの重要性を予測するためのグラフニューラルネットワークアーキテクチャを提案する。
提案手法では,プランナと遷移モデルをブラックボックスとして扱い,既製のプランナで使用することができる。
論文 参考訳(メタデータ) (2020-09-11T18:55:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。