A short note about the dynamical description of the measurement process
in quantum physics
- URL: http://arxiv.org/abs/2312.12922v1
- Date: Wed, 20 Dec 2023 10:56:35 GMT
- Title: A short note about the dynamical description of the measurement process
in quantum physics
- Authors: Jean Richert, Tarek Khalil
- Abstract summary: We consider the measured system part of an open system interacting with the measuring device and show under which ideal conditions the measure process may ideally work.
Our procedure leads to the conclusion that there is no hope that any experimental procedure will be able to lead to a clean solution of the process, except maybe in very specific cases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The measurement process of observables in a quantum system comes out to be an
unsovable problem which started in the early times of the development of the
theory. In the present note we consider the measured system part of an open
system interacting with the measuring device and show under which ideal
conditions the measure process may ideally work. Our procedure leads to the
conclusion that there is no hope that any experimental procedure will be able
to lead to a clean solution of the process, except maybe in very specific
cases. The reasons for this situation are deeply rooted in the fundamental
properties of quantum theory.
Related papers
- Classical Invasive Description of Informationally-Complete Quantum
Processes [0.0]
In classical theory, the joint probability distributions of a process obey by definition the Kolmogorov consistency conditions.
Here, we derive conditions that characterize uniquely classical processes that are probed by a reasonable class of invasive measurements.
We then analyse under what circumstances such classical processes can simulate the statistics arising from quantum processes associated with informationally-complete measurements.
arXiv Detail & Related papers (2023-12-11T17:31:32Z) - Quantum Back-action Limits in Dispersively Measured Bose-Einstein
Condensates [0.0]
We theoretically and experimentally characterize quantum back-action in atomic Bose-Einstein condensates interacting with a far-from resonant laser beam.
We experimentally quantify the resulting wavefunction change in terms of the contrast of a Ramsey interferometer.
This result is a necessary precursor for achieving true quantum back-action limited measurements of quantum gases.
arXiv Detail & Related papers (2022-09-09T17:04:36Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - The Measurement Process in Relational Quantum Mechanics [0.0]
Motivated by Breuer's claim that it is impossible for an observer to distinguish all states of a system in which it is contained, wave function collapse is tied to self observation in the Schmidt biorthonormal decomposition of entangled systems.
This approach provides quantum mechanics in general and relational quantum mechanics in particular with a clean, well motivated explanation of the measurement process and wave function collapse.
arXiv Detail & Related papers (2020-12-21T18:50:44Z) - Quantum feedback for measurement and control [0.0]
Experimentally, we show that continuous measurement allows one to observe the dynamics of a system undergoing simultaneous non-commuting measurements.
We combine the theoretical focus on quantum feedback with the experimental capabilities of superconducting circuits to implement a feedback controlled quantum amplifier.
arXiv Detail & Related papers (2020-04-21T06:00:54Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Non-destructively probing the thermodynamics of quantum systems with
qumodes [0.6144680854063939]
In quantum systems there is often a destruction of the system itself due to the means of measurement.
One approach to circumventing this is the use of ancillary probes that couple to the system under investigation.
We highlight means by which continuous variable quantum modes (qumodes) can be employed to probe the thermodynamics of quantum systems in and out of equilibrium.
arXiv Detail & Related papers (2017-07-13T17:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.