論文の概要: Misclassification excess risk bounds for 1-bit matrix completion
- arxiv url: http://arxiv.org/abs/2312.12945v1
- Date: Wed, 20 Dec 2023 11:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 15:51:45.576394
- Title: Misclassification excess risk bounds for 1-bit matrix completion
- Title(参考訳): 1ビット行列完備化のための誤分類過剰リスク境界
- Authors: The Tien Mai
- Abstract要約: 本研究では, 1ビット行列完備化の文脈において, 過度な誤分類リスクについて検討した。
マトリックスの完成は、様々な分野にまたがる様々な応用のために、過去20年間にかなりの注目を集めてきた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study investigates the misclassification excess risk bound in the
context of 1-bit matrix completion, a significant problem in machine learning
involving the recovery of an unknown matrix from a limited subset of its
entries. Matrix completion has garnered considerable attention in the last two
decades due to its diverse applications across various fields. Unlike
conventional approaches that deal with real-valued samples, 1-bit matrix
completion is concerned with binary observations. While prior research has
predominantly focused on the estimation error of proposed estimators, our study
shifts attention to the prediction error. This paper offers theoretical
analysis regarding the prediction errors of two previous works utilizing the
logistic regression model: one employing a max-norm constrained minimization
and the other employing nuclear-norm penalization. Significantly, our findings
demonstrate that the latter achieves the minimax-optimal rate without the need
for an additional logarithmic term. These novel results contribute to a deeper
understanding of 1-bit matrix completion by shedding light on the predictive
performance of specific methodologies.
- Abstract(参考訳): 本研究は,未知行列の回復に関わる機械学習における重要な問題である,1ビット行列完備化の文脈における過度の誤分類リスクについて検討する。
マトリックスの完成は、様々な分野にまたがる多様な応用により、過去20年間にかなりの注目を集めてきた。
実数値サンプルを扱う従来のアプローチとは異なり、1ビットの行列補完はバイナリ観測に関係している。
先行研究は主に推定誤差に着目してきたが,本研究は予測誤差に着目している。
本稿では,ロジスティック回帰モデルを用いた2つの先行研究の予測誤差に関する理論的解析について述べる。
有意な結果は,後者が対数項を追加する必要なしに最小最適化率を達成することを示した。
これらの新たな結果は,特定の手法の予測性能に光を当てることにより,1ビット行列の完成度をより深く理解することに貢献している。
関連論文リスト
- Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
切り抜き固有分解を用いて得られたカーネル行列の低ランク近似に対するエントリーワイド誤差境界を導出する。
重要な技術的革新は、小さな固有値に対応するカーネル行列の固有ベクトルの非局在化結果である。
我々は、合成および実世界のデータセットの集合に関する実証的研究により、我々の理論を検証した。
論文 参考訳(メタデータ) (2024-05-23T12:26:25Z) - Concentration properties of fractional posterior in 1-bit matrix completion [0.0]
この研究は、しばしば1ビット行列完備化と呼ばれるバイナリ観測のシナリオに特に対処する。
一般の非一様サンプリング方式を考慮し、分数後方の有効性に関する理論的保証を提供することにより、このギャップに対処する。
我々の結果は、頻繁な文献に見られるものと同等であるが、制限的な仮定は少ない。
論文 参考訳(メタデータ) (2024-04-13T11:22:53Z) - Predictor-Rejector Multi-Class Abstention: Theoretical Analysis and Algorithms [30.389055604165222]
マルチクラス分類設定において,留意を伴う学習の鍵となる枠組みについて検討する。
この設定では、学習者は事前に定義されたコストで予測をしないことを選択できる。
我々は、強い非漸近的および仮説的整合性を保証するために、いくつかの新しい代理損失の族を導入する。
論文 参考訳(メタデータ) (2023-10-23T10:16:27Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
低ランク構造を持つ強化学習(RL)における行列推定問題について検討した。
低ランク帯では、回収される行列は期待される腕の報酬を指定し、低ランクマルコフ決定プロセス(MDP)では、例えばMDPの遷移カーネルを特徴付ける。
簡単なスペクトルベースの行列推定手法は,行列の特異部分空間を効率よく復元し,ほぼ最小の入力誤差を示すことを示す。
論文 参考訳(メタデータ) (2023-10-10T17:06:41Z) - Understanding Incremental Learning of Gradient Descent: A Fine-grained
Analysis of Matrix Sensing [74.2952487120137]
GD(Gradient Descent)は、機械学習モデルにおいて、良い一般化に対する暗黙のバイアスをもたらすと考えられている。
本稿では,行列センシング問題に対するGDのダイナミクスを詳細に解析する。
論文 参考訳(メタデータ) (2023-01-27T02:30:51Z) - A Generalized Latent Factor Model Approach to Mixed-data Matrix
Completion with Entrywise Consistency [3.299672391663527]
マトリックスコンプリート(Matrix completion)は、部分的に観察された行列における欠落したエントリの予測に関する機械学習手法のクラスである。
非線型因子モデルの一般族の下での低ランク行列推定問題として定式化する。
低ランク行列を推定するためのエントリーワイドな一貫した推定器を提案する。
論文 参考訳(メタデータ) (2022-11-17T00:24:47Z) - Mitigating multiple descents: A model-agnostic framework for risk
monotonization [84.6382406922369]
クロスバリデーションに基づくリスクモノトナイズのための一般的なフレームワークを開発する。
本稿では,データ駆動方式であるゼロステップとワンステップの2つの手法を提案する。
論文 参考訳(メタデータ) (2022-05-25T17:41:40Z) - Robust Regularized Low-Rank Matrix Models for Regression and
Classification [14.698622796774634]
本稿では,ランク制約,ベクトル正規化(疎性など),一般損失関数に基づく行列変分回帰モデルのフレームワークを提案する。
アルゴリズムは収束することが保証されており、アルゴリズムのすべての累積点が$O(sqrtn)$100の順序で推定誤差を持ち、最小値の精度をほぼ達成していることを示す。
論文 参考訳(メタデータ) (2022-05-14T18:03:48Z) - The Predictive Normalized Maximum Likelihood for Over-parameterized
Linear Regression with Norm Constraint: Regret and Double Descent [12.929639356256928]
現代の機械学習モデルは、予測規則の複雑さとその一般化能力の間のトレードオフに従わないことを示す。
最近提案された予測正規化最大値 (pNML) は、個々のデータに対するmin-max後悔解である。
我々は,pNML後悔を合成データ上でのポイントワイド学習可能性尺度として使用し,二重発生現象の予測に成功していることを示す。
論文 参考訳(メタデータ) (2021-02-14T15:49:04Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z) - Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion [101.83262280224729]
我々は、原子核ノルム正規化行列補完に対する相対誤差を開発する。
未知行列の最適低ランク近似を回復するための相対上界を導出する。
論文 参考訳(メタデータ) (2015-04-26T13:12:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。