論文の概要: Concentration properties of fractional posterior in 1-bit matrix completion
- arxiv url: http://arxiv.org/abs/2404.08969v1
- Date: Sat, 13 Apr 2024 11:22:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 17:53:43.828797
- Title: Concentration properties of fractional posterior in 1-bit matrix completion
- Title(参考訳): 1ビットマトリクスにおける分画後部の濃度特性
- Authors: The Tien Mai,
- Abstract要約: この研究は、しばしば1ビット行列完備化と呼ばれるバイナリ観測のシナリオに特に対処する。
一般の非一様サンプリング方式を考慮し、分数後方の有効性に関する理論的保証を提供することにより、このギャップに対処する。
我々の結果は、頻繁な文献に見られるものと同等であるが、制限的な仮定は少ない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The problem of estimating a matrix based on a set of its observed entries is commonly referred to as the matrix completion problem. In this work, we specifically address the scenario of binary observations, often termed as 1-bit matrix completion. While numerous studies have explored Bayesian and frequentist methods for real-value matrix completion, there has been a lack of theoretical exploration regarding Bayesian approaches in 1-bit matrix completion. We tackle this gap by considering a general, non-uniform sampling scheme and providing theoretical assurances on the efficacy of the fractional posterior. Our contributions include obtaining concentration results for the fractional posterior and demonstrating its effectiveness in recovering the underlying parameter matrix. We accomplish this using two distinct types of prior distributions: low-rank factorization priors and a spectral scaled Student prior, with the latter requiring fewer assumptions. Importantly, our results exhibit an adaptive nature by not mandating prior knowledge of the rank of the parameter matrix. Our findings are comparable to those found in the frequentist literature, yet demand fewer restrictive assumptions.
- Abstract(参考訳): 観測された項目の集合に基づいて行列を推定する問題は、一般に行列完備問題と呼ばれる。
本稿では,2値観測のシナリオを特に取り上げ,しばしば1ビット行列完備化と呼ばれる。
多くの研究が実値行列完備化のためのベイズ的および頻繁な手法を探求してきたが、1ビット行列完備化におけるベイズ的アプローチに関する理論的調査は欠如している。
一般の非一様サンプリング方式を考慮し、分数後方の有効性に関する理論的保証を提供することにより、このギャップに対処する。
本研究の貢献は, 分節後部の濃度値の取得と, 基礎となるパラメータ行列の回復における有効性を示すことである。
低ランク因数分解前とスペクトルスケールの学生前という2つの異なる種類の事前分布を用いてこれを達成し、後者は仮定を少なくする。
重要なことは、パラメータ行列のランクに関する事前知識を課さないことで、適応性を示す。
我々の発見は、頻繁な文献で見られるものと同等であるが、制限的な仮定は少ない。
関連論文リスト
- Low-rank Bayesian matrix completion via geodesic Hamiltonian Monte Carlo on Stiefel manifolds [0.18416014644193066]
低ランクベイズ行列の効率的な計算を可能にするための新しいサンプリングベース手法を提案する。
提案手法は, 標準ギブスサンプリング器で発生するサンプリング困難を, 行列完備化に使用される一般的な2つの行列因子化のために解決することを示す。
数値的な例は、より優れた混合と定常分布への高速収束を含む優れたサンプリング性能を示す。
論文 参考訳(メタデータ) (2024-10-27T03:12:53Z) - Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
切り抜き固有分解を用いて得られたカーネル行列の低ランク近似に対するエントリーワイド誤差境界を導出する。
重要な技術的革新は、小さな固有値に対応するカーネル行列の固有ベクトルの非局在化結果である。
我々は、合成および実世界のデータセットの集合に関する実証的研究により、我々の理論を検証した。
論文 参考訳(メタデータ) (2024-05-23T12:26:25Z) - Quantization of Large Language Models with an Overdetermined Basis [73.79368761182998]
本稿では,嘉心表現の原理に基づくデータ量子化アルゴリズムを提案する。
以上の結果から, カシ量子化はモデル性能の競争力や優れた品質を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-04-15T12:38:46Z) - Misclassification excess risk bounds for 1-bit matrix completion [0.0]
本研究では, 1ビット行列完備化の文脈において, 過度な誤分類リスクについて検討した。
マトリックスの完成は、様々な分野にまたがる様々な応用のために、過去20年間にかなりの注目を集めてきた。
論文 参考訳(メタデータ) (2023-12-20T11:42:49Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
低ランク構造を持つ強化学習(RL)における行列推定問題について検討した。
低ランク帯では、回収される行列は期待される腕の報酬を指定し、低ランクマルコフ決定プロセス(MDP)では、例えばMDPの遷移カーネルを特徴付ける。
簡単なスペクトルベースの行列推定手法は,行列の特異部分空間を効率よく復元し,ほぼ最小の入力誤差を示すことを示す。
論文 参考訳(メタデータ) (2023-10-10T17:06:41Z) - Causal Matrix Completion [15.599296461516984]
マトリックス完備化(Matrix completion)は、ノイズ観測のスパース部分集合から基礎となる行列を復元する研究である。
伝統的に、行列の成分は「ランダムに完全に欠落している」と仮定される。
論文 参考訳(メタデータ) (2021-09-30T14:17:56Z) - Bayesian matrix completion with a spectral scaled Student prior:
theoretical guarantee and efficient sampling [0.30458514384586394]
スペクトルスケールされた学生プリエントは、データマトリックスの下位低ランク構造を好むために利用される。
提案手法は,本手法がモデル不特定条件下でうまく機能することを保証し,極小最適オラクル不等式を満足することを示す。
論文 参考訳(メタデータ) (2021-04-16T16:03:43Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
ロバスト低ランク行列補完(RMC)は、コンピュータビジョン、信号処理、機械学習アプリケーションのために広く研究されている。
この問題は、部分的に観察された行列を低ランク行列とスパース行列の重ね合わせに分解することを目的とした。
RMCに取り組むために広く用いられるアプローチは、低ランク行列の核ノルム(低ランク性を促進するために)とスパース行列のl1ノルム(空間性を促進するために)を最小化する凸定式化を考えることである。
本稿では、近年のローワークの動機付けについて述べる。
論文 参考訳(メタデータ) (2020-08-18T04:46:22Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
そこで我々は,適応的かつ音質の高い"核フロベニウスノルム"と呼ばれる新しい非スケーラブルな低ランク正規化器を提案する。
特異値の計算をバイパスし、アルゴリズムによる高速な最適化を可能にする。
既存の行列学習手法では最速でありながら、最先端の回復性能が得られる。
論文 参考訳(メタデータ) (2020-08-14T18:47:58Z) - Robust Matrix Completion with Mixed Data Types [0.0]
我々は,データ型が混在する部分的なエントリを持つ構造的低ランク行列を復元する問題を考察する。
ほとんどのアプローチは、基礎となる分布は1つしかないと仮定し、低階の制約は、行列 Satten Norm によって正則化される。
本稿では, 並列化に適したアルゴリズムフレームワークとともに, 高い回復保証を有する計算可能な統計手法を提案し, 混合データ型に対する部分的に観測されたエントリを持つ低階行列を1ステップで復元する。
論文 参考訳(メタデータ) (2020-05-25T21:35:10Z) - Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion [101.83262280224729]
我々は、原子核ノルム正規化行列補完に対する相対誤差を開発する。
未知行列の最適低ランク近似を回復するための相対上界を導出する。
論文 参考訳(メタデータ) (2015-04-26T13:12:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。