論文の概要: AgentCoder: Multi-Agent-based Code Generation with Iterative Testing and Optimisation
- arxiv url: http://arxiv.org/abs/2312.13010v3
- Date: Fri, 24 May 2024 11:47:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 23:26:50.634772
- Title: AgentCoder: Multi-Agent-based Code Generation with Iterative Testing and Optimisation
- Title(参考訳): AgentCoder: 反復テストと最適化を備えたマルチエージェントベースのコード生成
- Authors: Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, Heming Cui,
- Abstract要約: 本稿では,マルチエージェント・アシスタント・コード生成(AgentCoder)を紹介する。
AgentCoderは,プログラマエージェント,テストデザイナエージェント,テストエグゼクタエージェントという,特殊なエージェントを備えたマルチエージェントフレームワークを備えた,斬新なソリューションだ。
9つのコード生成モデルと12つの拡張アプローチの実験では、既存のコード生成モデルよりもAgentCoderの方が優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 11.155351560550853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement of natural language processing (NLP) has been significantly boosted by the development of transformer-based large language models (LLMs). These models have revolutionized NLP tasks, particularly in code generation, aiding developers in creating software with enhanced efficiency. Despite their advancements, challenges in balancing code snippet generation with effective test case generation and execution persist. To address these issues, this paper introduces Multi-Agent Assistant Code Generation (AgentCoder), a novel solution comprising a multi-agent framework with specialized agents: the programmer agent, the test designer agent, and the test executor agent. During the coding procedure, the programmer agent will focus on the code generation and refinement based on the test executor agent's feedback. The test designer agent will generate test cases for the generated code, and the test executor agent will run the code with the test cases and write the feedback to the programmer. This collaborative system ensures robust code generation, surpassing the limitations of single-agent models and traditional methodologies. Our extensive experiments on 9 code generation models and 12 enhancement approaches showcase AgentCoder's superior performance over existing code generation models and prompt engineering techniques across various benchmarks. For example, AgentCoder (GPT-4) achieves 96.3\% and 91.8\% pass@1 in HumanEval and MBPP datasets with an overall token overhead of 56.9K and 66.3K, while state-of-the-art obtains only 90.2\% and 78.9\% pass@1 with an overall token overhead of 138.2K and 206.5K.
- Abstract(参考訳): 自然言語処理(NLP)の進歩は、トランスフォーマーベースの大規模言語モデル(LLM)の開発によって著しく加速された。
これらのモデルは、特にコード生成におけるNLPタスクに革命をもたらした。
その進歩にもかかわらず、コードスニペット生成と効果的なテストケース生成と実行のバランスをとる上での課題は継続している。
これらの課題に対処するために,プログラマエージェント,テストデザイナエージェント,テストエグゼクタエージェントなど,特殊なエージェントを備えたマルチエージェントフレームワークを備えた新しいソリューションであるマルチエージェントアシスタントコード生成(AgentCoder)を紹介する。
コーディング手順の間、プログラマエージェントは、テスト実行エージェントのフィードバックに基づいて、コード生成と改善に集中します。
テストデザイナエージェントは生成されたコードのテストケースを生成し、テスト実行エージェントはテストケースでコードを実行し、プログラマにフィードバックを書きます。
この協調システムは、単一エージェントモデルと従来の方法論の制限を越えて、堅牢なコード生成を保証する。
9つのコード生成モデルと12の拡張アプローチに関する広範な実験では、AgentCoderが既存のコード生成モデルよりも優れたパフォーマンスを示し、さまざまなベンチマークでエンジニアリング技術を推進しています。
例えば、AgentCoder (GPT-4)は、HumanEvalとMBPPのデータセットで96.3\%と91.8\%のpass@1を達成し、全体的なトークンオーバーヘッドは56.9Kと66.3Kであり、State-of-the-artは90.2\%と78.9\%のpass@1と138.2Kと206.5Kである。
関連論文リスト
- CodeCoR: An LLM-Based Self-Reflective Multi-Agent Framework for Code Generation [10.048098631259876]
コード生成は、自然言語で書かれた要求を自動的に満たすコードを生成することを目的としている。
ChatGPTのような大きな言語モデル(LLM)は、生成されたコードの構文的および意味論的正確性を保証するのに失敗する。
我々は,各エージェントとそのコラボレーションの有効性を評価する,自己表現型マルチエージェントフレームワークであるCodeCoRを提案する。
論文 参考訳(メタデータ) (2025-01-14T03:21:10Z) - Commit0: Library Generation from Scratch [77.38414688148006]
Commit0は、AIエージェントにスクラッチからライブラリを書くよう促すベンチマークである。
エージェントには、ライブラリのAPIを概説する仕様文書と、インタラクティブなユニットテストスイートが提供されている。
Commit0はまた、モデルが生成したコードに対して静的解析と実行フィードバックを受け取る、インタラクティブな環境も提供する。
論文 参考訳(メタデータ) (2024-12-02T18:11:30Z) - CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models [106.11371409170818]
大規模言語モデル(LLM)は、生成されたコードを自己定義し、自律的に改善する機能を持つエージェントとして機能する。
コード生成プロセスの異なる段階における探索空間を効率的に探索するLLMエージェントのためのフレームワークであるCodeTreeを提案する。
具体的には、異なるコーディング戦略を明示的に探求し、対応するコーディングソリューションを生成し、その後、ソリューションを洗練するために統合されたツリー構造を採用しました。
論文 参考訳(メタデータ) (2024-11-07T00:09:54Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents [10.730852617039451]
ユーザ問題をテストケースに形式化するLLMベースのコードエージェントについて検討する。
我々は人気のあるGitHubリポジトリに基づいた新しいベンチマークを提案し、現実世界の問題、地味なバグフィックス、ゴールデンテストを含む。
コード修復用に設計されたコードエージェントは,テスト生成用に設計されたシステムの性能を上回っている。
論文 参考訳(メタデータ) (2024-06-18T14:54:37Z) - SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents [50.82665351100067]
FlowGenは、複数のLarge Language Model (LLM)エージェントに基づいたソフトウェアプロセスモデルをエミュレートするコード生成フレームワークである。
FlowGenScrumをHumanEval、HumanEval-ET、MBPP、MBPP-ETの4つのベンチマークで評価した。
論文 参考訳(メタデータ) (2024-03-23T14:04:48Z) - RepoAgent: An LLM-Powered Open-Source Framework for Repository-level
Code Documentation Generation [79.83270415843857]
コードドキュメンテーションを積極的に生成、保守、更新することを目的とした、大規模な言語モデルによるオープンソースフレームワークであるRepoAgentを紹介します。
RepoAgentは高品質なリポジトリレベルのドキュメントを生成するのに優れています。
論文 参考訳(メタデータ) (2024-02-26T15:39:52Z) - Test-Driven Development for Code Generation [0.850206009406913]
大きな言語モデル(LLM)は、問題ステートメントから直接コードスニペットを生成する重要な機能を示している。
本稿では,テスト駆動開発(TDD)をAI支援コード生成プロセスに組み込む方法について検討する。
論文 参考訳(メタデータ) (2024-02-21T04:10:12Z) - CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges [41.038584732889895]
大規模言語モデル(LLM)は自動コード生成において有望であるが、通常は単純なタスクでのみ優れている。
私たちの研究は、実世界のリポジトリレベルのコード生成という、より現実的な設定でLLMを評価することに向かっています。
我々は,効率的なリポジトリレベルのコード生成に外部ツールを利用する,新しいLLMベースのエージェントフレームワークであるCodeAgentを紹介する。
論文 参考訳(メタデータ) (2024-01-14T18:12:03Z) - CodeT: Code Generation with Generated Tests [49.622590050797236]
テストケースを自動的に生成するための事前学習言語モデルについて検討する。
CodeTは生成されたテストケースを使ってコードソリューションを実行し、次に最良のソリューションを選択します。
我々は,HumanEvalとMBPPのベンチマークを用いて,5種類の事前学習モデル上でCodeTを評価する。
論文 参考訳(メタデータ) (2022-07-21T10:18:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。