論文の概要: GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI
- arxiv url: http://arxiv.org/abs/2409.01392v1
- Date: Mon, 2 Sep 2024 17:44:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 04:14:12.720851
- Title: GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI
- Title(参考訳): GenAgent: ワークフローの自動生成によるコラボレーションAIシステムの構築 -- ComfyUIのケーススタディ
- Authors: Xiangyuan Xue, Zeyu Lu, Di Huang, Wanli Ouyang, Lei Bai,
- Abstract要約: 本稿では、モデル、データソース、パイプラインを統合し、複雑で多様なタスクを解決するためにパフォーマンスを向上させるために使用される協調AIシステムについて検討する。
我々は、LLMベースのフレームワークであるGenAgentを紹介した。
その結果、GenAgentは実行レベルおよびタスクレベルの評価においてベースラインアプローチよりも優れていた。
- 参考スコア(独自算出の注目度): 64.57616646552869
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Much previous AI research has focused on developing monolithic models to maximize their intelligence and capability, with the primary goal of enhancing performance on specific tasks. In contrast, this paper explores an alternative approach: collaborative AI systems that use workflows to integrate models, data sources, and pipelines to solve complex and diverse tasks. We introduce GenAgent, an LLM-based framework that automatically generates complex workflows, offering greater flexibility and scalability compared to monolithic models. The core innovation of GenAgent lies in representing workflows with code, alongside constructing workflows with collaborative agents in a step-by-step manner. We implement GenAgent on the ComfyUI platform and propose a new benchmark, OpenComfy. The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations, showing its capability to generate complex workflows with superior effectiveness and stability.
- Abstract(参考訳): これまでのAI研究は、インテリジェンスと能力を最大化するモノリシックモデルの開発に重点を置いてきた。
対照的に、この記事では、ワークフローを使用してモデル、データソース、パイプラインを統合し、複雑で多様なタスクを解決する、コラボレーションAIシステムという別のアプローチを探求する。
我々は、複雑なワークフローを自動的に生成するLLMベースのフレームワークであるGenAgentを紹介し、モノリシックモデルよりも柔軟性とスケーラビリティを提供する。
GenAgentの中核的なイノベーションは、ワークフローをコードで表現することであり、ワークフローと協調エージェントをステップバイステップで構築することにある。
我々は、ComfyUIプラットフォームにGenAgentを実装し、新しいベンチマークOpenComfyを提案する。
その結果、GenAgentは実行レベルおよびタスクレベルの評価においてベースラインアプローチよりも優れており、より優れた効率と安定性で複雑なワークフローを生成する能力を示している。
関連論文リスト
- PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC [98.82146219495792]
本稿では,PC-Agentという階層型エージェントフレームワークを提案する。
認識の観点からは,現在のMLLMのスクリーンショットコンテンツに対する認識能力の不十分さを克服するために,アクティブ知覚モジュール(APM)を考案する。
意思決定の観点から、複雑なユーザ命令や相互依存サブタスクをより効果的に扱うために、階層的なマルチエージェント協調アーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-20T05:41:55Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
私たちは小さなソフトウェア企業環境を模倣したデータによる自己完結型環境を構築します。
最も競争力のあるエージェントでは、タスクの24%が自律的に完了できます。
これは、LMエージェントによるタスク自動化に関するニュアンスな絵を描く。
論文 参考訳(メタデータ) (2024-12-18T18:55:40Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
大規模言語モデル(LLM)は、特にソフトウェア開発において、様々な領域に大きな変化をもたらした。
本稿では,新しいLLM学習フレームワークであるExperiential Co-Learningを紹介する。
実験では、このフレームワークにより、エージェントは、目に見えないソフトウェア開発タスクをより効果的に対処できることを示した。
論文 参考訳(メタデータ) (2023-12-28T13:50:42Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
本稿では,様々なタスクやドメインに対する動的コミュニケーション構造において,候補からエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLMを利用したエージェント協調のための動的LLMパワーエージェントネットワーク(textDyLAN$)というフレームワークを構築した。
我々は、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、DyLANが強力なベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z) - Self-collaboration Code Generation via ChatGPT [35.88318116340547]
大規模言語モデル(LLM)はコード生成能力に優れていますが、複雑なタスクに苦労しています。
本稿では,ChatGPT で実証した LLM を用いたコード生成のための自己協調フレームワークを提案する。
この仮想チームを効果的に組織化し、管理するために、ソフトウェア開発方法論をフレームワークに組み入れます。
論文 参考訳(メタデータ) (2023-04-15T16:33:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。