論文の概要: ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation
- arxiv url: http://arxiv.org/abs/2312.13108v1
- Date: Wed, 20 Dec 2023 15:28:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-21 15:19:00.851864
- Title: ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation
- Title(参考訳): assistgui:タスク指向のデスクトップユーザインタフェース自動化
- Authors: Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao,
Qinchen Wu, Weichen Zhang, Peiyi Wang, Xiangwu Guo, Hengxu Wang, Luowei Zhou,
Mike Zheng Shou
- Abstract要約: 本稿では,ユーザが要求するタスクに応じて,Windowsプラットフォーム上でマウスとキーボードを操作することができるかどうかを評価するための新しいベンチマーク,AssistGUIを提案する。
本稿では,AIエージェントによって駆動される高度なGUIを組み込んだ高度なアクタ・クリティカル・フレームワークを提案する。
- 参考スコア(独自算出の注目度): 30.693616802332745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphical User Interface (GUI) automation holds significant promise for
assisting users with complex tasks, thereby boosting human productivity.
Existing works leveraging Large Language Model (LLM) or LLM-based AI agents
have shown capabilities in automating tasks on Android and Web platforms.
However, these tasks are primarily aimed at simple device usage and
entertainment operations. This paper presents a novel benchmark, AssistGUI, to
evaluate whether models are capable of manipulating the mouse and keyboard on
the Windows platform in response to user-requested tasks. We carefully
collected a set of 100 tasks from nine widely-used software applications, such
as, After Effects and MS Word, each accompanied by the necessary project files
for better evaluation. Moreover, we propose an advanced Actor-Critic Embodied
Agent framework, which incorporates a sophisticated GUI parser driven by an
LLM-agent and an enhanced reasoning mechanism adept at handling lengthy
procedural tasks. Our experimental results reveal that our GUI Parser and
Reasoning mechanism outshine existing methods in performance. Nevertheless, the
potential remains substantial, with the best model attaining only a 46% success
rate on our benchmark. We conclude with a thorough analysis of the current
methods' limitations, setting the stage for future breakthroughs in this
domain.
- Abstract(参考訳): グラフィカルユーザインタフェース(GUI)の自動化は、複雑なタスクでユーザを支援するという大きな約束を持ち、それによって人間の生産性が向上する。
LLM(Large Language Model)やLLMベースのAIエージェントを活用する既存の作業は、AndroidとWebプラットフォーム上でタスクを自動化する機能を示している。
しかし、これらのタスクは主に単純なデバイスの使用とエンターテイメント操作を目的としている。
本稿では,ユーザが要求するタスクに応じて,Windowsプラットフォーム上でマウスとキーボードを操作することができるかどうかを評価するための新しいベンチマーク,AssistGUIを提案する。
我々は、After EffectsやMS Wordなど、広く使われている9つのソフトウェアアプリケーションから、必要なプロジェクトファイルとともに、100のタスクを慎重に収集した。
さらに,llmエージェントによって駆動される高度なguiパーサと,長い手続きタスクの処理に適した拡張推論機構を組み込んだ,高度なアクタ批判型エンボディエージェントフレームワークを提案する。
実験の結果,GUIパーザと推論機構が既存の性能手法より優れていることがわかった。
それでも、最良のモデルは私たちのベンチマークで46%の成功率しか得られていない。
結論として,現在の手法の限界を徹底的に分析し,この領域における今後のブレークスルーのステージを設定した。
関連論文リスト
- GUI Agents with Foundation Models: A Comprehensive Survey [52.991688542729385]
この調査は(M)LLMベースのGUIエージェントに関する最近の研究を集約する。
データ、フレームワーク、アプリケーションにおける重要なイノベーションを強調します。
本稿では, (M)LLM ベースの GUI エージェントの分野におけるさらなる発展を期待する。
論文 参考訳(メタデータ) (2024-11-07T17:28:10Z) - AutoGLM: Autonomous Foundation Agents for GUIs [51.276965515952]
我々は、グラフィカルユーザインタフェース(GUI)を介してデジタルデバイスを自律的に制御するための基礎エージェントとして設計された、ChatGLMファミリーの新しいシリーズであるAutoGLMを紹介する。
実世界のGUIインタラクションのための実践的基礎エージェントシステムとしてAutoGLMを開発した。
評価では、AutoGLMが複数のドメインにまたがって有効であることを示す。
論文 参考訳(メタデータ) (2024-10-28T17:05:10Z) - VideoGUI: A Benchmark for GUI Automation from Instructional Videos [78.97292966276706]
VideoGUIは、ビジュアル中心のGUIタスクでGUIアシスタントを評価するために設計された、新しいマルチモーダルベンチマークである。
高品質なWebインストラクショナルビデオから得られたベンチマークは、プロフェッショナルと新しいソフトウェアに関わるタスクに焦点を当てている。
評価の結果,SoTAの大規模マルチモーダルモデルであるGPT4oでさえ,視覚中心のGUIタスクでは不十分であることが判明した。
論文 参考訳(メタデータ) (2024-06-14T17:59:08Z) - CAAP: Context-Aware Action Planning Prompting to Solve Computer Tasks with Front-End UI Only [21.054681757006385]
本稿では,スクリーンショット画像のみを通して環境を知覚するエージェントを提案する。
大規模言語モデルの推論能力を活用することで,大規模人間の実演データの必要性を解消する。
AgentはMiniWoB++の平均成功率は94.5%、WebShopの平均タスクスコアは62.3である。
論文 参考訳(メタデータ) (2024-06-11T05:21:20Z) - SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering [79.07755560048388]
SWEエージェント(SWE-agent)は、LMエージェントが自律的にコンピュータを使用してソフトウェア工学のタスクを解決するシステムである。
SWEエージェントのカスタムエージェントコンピュータインタフェース(ACI)は、エージェントがコードファイルを作成し編集し、リポジトリ全体をナビゲートし、テストやその他のプログラムを実行する能力を著しく向上させる。
我々はSWE-benchとHumanEvalFixのSWE-agentを評価し、それぞれ12.5%と87.7%のパス@1レートで最先端の性能を実現した。
論文 参考訳(メタデータ) (2024-05-06T17:41:33Z) - OmniACT: A Dataset and Benchmark for Enabling Multimodal Generalist Autonomous Agents for Desktop and Web [43.60736044871539]
エージェントがプログラムを生成する能力を評価するためのベンチマークであるOmniACTを紹介した。
このデータセットは、「次の曲を再生する」といった基本的なタスクと、「ジョン・ドーにメールを送る」といった長い水平線タスクで構成されている。
我々のベンチマークは、コンピュータタスクの自動化における言語モデルエージェントの進捗を計測し、評価するプラットフォームを提供する。
論文 参考訳(メタデータ) (2024-02-27T14:47:53Z) - CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation [61.68049335444254]
MLLM(Multimodal large language model)は、人間のような自律型言語エージェントが現実世界の環境と相互作用する可能性を示している。
包括的環境認識(CEP)と条件付き行動予測(CAP)の2つの新しいアプローチを備えた包括的認知型LLMエージェントCoCo-Agentを提案する。
AITW と META-GUI ベンチマークにおいて,我々のエージェントは実シナリオで有望な性能を示す新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-19T08:29:03Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - You Only Look at Screens: Multimodal Chain-of-Action Agents [37.118034745972956]
Auto-GUIは、インターフェースと直接対話するマルチモーダルソリューションである。
そこで本研究では,エージェントが実行すべきアクションを決定するためのチェーン・オブ・アクション手法を提案する。
我々は,30$Kのユニークな命令を持つ新しいデバイス制御ベンチマークAITWに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-09-20T16:12:32Z) - Mobile-Env: Building Qualified Evaluation Benchmarks for LLM-GUI Interaction [28.53259866617677]
Android モバイル環境で GUI ベンチマークを作成するための総合ツールキットである Mobile-Env を紹介した。
我々は、さまざまな現実世界のアプリにまたがるオープンワールドのタスクと、固定されたワールドセットWikiHowを収集し、大量の動的オンラインコンテンツをキャプチャする。
我々の研究結果によると、高度なモデルでさえ、人間にとって比較的簡単なタスクに苦しむことがわかった。
論文 参考訳(メタデータ) (2023-05-14T12:31:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。