論文の概要: SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering
- arxiv url: http://arxiv.org/abs/2405.15793v3
- Date: Mon, 11 Nov 2024 20:01:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:19:44.279373
- Title: SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering
- Title(参考訳): SWE-agent: エージェント・コンピュータ・インタフェースによるソフトウェア・エンジニアリングの自動化
- Authors: John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, Ofir Press,
- Abstract要約: SWEエージェント(SWE-agent)は、LMエージェントが自律的にコンピュータを使用してソフトウェア工学のタスクを解決するシステムである。
SWEエージェントのカスタムエージェントコンピュータインタフェース(ACI)は、エージェントがコードファイルを作成し編集し、リポジトリ全体をナビゲートし、テストやその他のプログラムを実行する能力を著しく向上させる。
我々はSWE-benchとHumanEvalFixのSWE-agentを評価し、それぞれ12.5%と87.7%のパス@1レートで最先端の性能を実現した。
- 参考スコア(独自算出の注目度): 79.07755560048388
- License:
- Abstract: Language model (LM) agents are increasingly being used to automate complicated tasks in digital environments. Just as humans benefit from powerful software applications, such as integrated development environments, for complex tasks like software engineering, we posit that LM agents represent a new category of end users with their own needs and abilities, and would benefit from specially-built interfaces to the software they use. We investigate how interface design affects the performance of language model agents. As a result of this exploration, we introduce SWE-agent: a system that facilitates LM agents to autonomously use computers to solve software engineering tasks. SWE-agent's custom agent-computer interface (ACI) significantly enhances an agent's ability to create and edit code files, navigate entire repositories, and execute tests and other programs. We evaluate SWE-agent on SWE-bench and HumanEvalFix, achieving state-of-the-art performance on both with a pass@1 rate of 12.5% and 87.7%, respectively, far exceeding the previous state-of-the-art achieved with non-interactive LMs. Finally, we provide insight on how the design of the ACI can impact agents' behavior and performance.
- Abstract(参考訳): 言語モデル(LM)エージェントは、デジタル環境における複雑なタスクの自動化にますます利用されている。
人間がソフトウェアエンジニアリングのような複雑なタスクのために統合開発環境のような強力なソフトウェアアプリケーションから恩恵を受けるのと同じように、LMエージェントはエンドユーザの新たなカテゴリを自身のニーズと能力で表現し、使用するソフトウェアに特別に構築されたインターフェースの恩恵を受けると仮定する。
インタフェース設計が言語モデルエージェントの性能に与える影響について検討する。
この調査の結果,ソフトウェア工学の課題を解決するために,LMエージェントが自律的にコンピュータを利用できるようにするシステムであるSWE-agentを紹介した。
SWEエージェントのカスタムエージェントコンピュータインタフェース(ACI)は、エージェントがコードファイルを作成し編集し、リポジトリ全体をナビゲートし、テストやその他のプログラムを実行する能力を著しく向上させる。
我々はSWE-benchとHumanEvalFixのSWE-agentを評価し、それぞれ12.5%と87.7%のパスで最先端性能を実現した。
最後に,ACIの設計がエージェントの行動やパフォーマンスに与える影響について考察する。
関連論文リスト
- SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation [89.24729958546168]
We present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agent。
SPA-Benchは3つの重要なコントリビューションを提供している。 英語と中国語の両方で、システムとサードパーティアプリをカバーする多様なタスクセットで、日々のルーチンで一般的に使用される機能に焦点を当てている。
複数の次元にまたがってエージェントのパフォーマンスを自動的に評価する新しい評価パイプラインは、タスク完了とリソース消費に関連する7つの指標を含んでいる。
論文 参考訳(メタデータ) (2024-10-19T17:28:48Z) - Agent S: An Open Agentic Framework that Uses Computers Like a Human [31.16046798529319]
我々は、GUI(Graphical User Interface)を通じてコンピュータとの自律的なインタラクションを可能にするオープンエージェントフレームワークであるAgent Sを提案する。
Agent Sは、ドメイン固有の知識の取得、長いタスクの水平線の計画、動的で一様でないインターフェイスの処理という、コンピュータタスクの自動化における3つの重要な課題に対処することを目指している。
論文 参考訳(メタデータ) (2024-10-10T17:43:51Z) - Turn Every Application into an Agent: Towards Efficient Human-Agent-Computer Interaction with API-First LLM-Based Agents [40.86728610906313]
AXISは、ユーザインタフェースアクションよりもアプリケーションプログラミングインターフェース(API)を通してアクションを優先順位付けする、LLMベースの新しいエージェントフレームワークである。
Office Wordでの実験では、AXISはタスク完了時間を65%-70%削減し、認知負荷を38%-53%削減し、精度は97%-98%と人間と比較した。
また、すべてのアプリケーションをエージェントに変え、エージェント中心のオペレーティングシステム(Agent OS)への道を開く可能性についても検討している。
論文 参考訳(メタデータ) (2024-09-25T17:58:08Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - Agentless: Demystifying LLM-based Software Engineering Agents [12.19683999553113]
Agentless - ソフトウェア開発の問題を自動解決するためのエージェントレスアプローチです。
Agentlessはエージェントベースのアプローチの冗長で複雑な設定と比較すると、ローカライゼーション、修復、パッチ検証の3フェーズプロセスをシンプルに採用している。
人気の高いSWE-bench Liteベンチマークの結果から、Agentlessは驚くほど高いパフォーマンスと低コストを達成できることがわかった。
論文 参考訳(メタデータ) (2024-07-01T17:24:45Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - MobileAgent: enhancing mobile control via human-machine interaction and
SOP integration [0.0]
大規模言語モデル(LLM)は、ユーザのためのモバイルデバイス操作を自動化できるようになった。
パーソナライズされたユーザデータに関するプライバシー上の懸念は、モバイル操作中に発生し、ユーザ確認が必要になる。
エージェントと人間間の対話的なタスクを設計し、機密情報を識別し、パーソナライズされたユーザニーズに合わせる。
提案手法は,複数ステップのタスクにまたがる30Kのユニークな命令を含む新しいデバイス制御ベンチマークであるAitWで評価される。
論文 参考訳(メタデータ) (2024-01-04T03:44:42Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
LLM(Large Language Models)は、人間のような知性を持つ言語である。
本稿では,ALMをベースとしたエージェントを用いた高度な自動化のための基盤的自動化パラダイムであるエージェントプロセス自動化(APA)を紹介する。
そして、人間の指示を駆使し、特殊エージェントの調整によって複雑な決定を下すように設計されたエージェントであるProAgentをインスタンス化する。
論文 参考訳(メタデータ) (2023-11-02T14:32:16Z) - Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models [31.509994889286183]
我々はLanguage Agent Tree Search (LATS)を紹介した。Language Agent Tree Search (LATS)は、推論、行動、計画において言語モデル(LM)の能力を相乗化する最初の一般的なフレームワークである。
当社のアプローチの重要な特徴は、より意図的で適応的な問題解決メカニズムを提供する外部フィードバック環境の導入である。
LATSは、GPT-4でHumanEval上でプログラミングするための最先端パス@1精度(92.7%)を達成し、GPTによるWebShop上のWebナビゲーションの勾配ベースの微調整に匹敵する勾配なし性能(平均スコア75.9)を示す。
論文 参考訳(メタデータ) (2023-10-06T17:55:11Z) - Agents: An Open-source Framework for Autonomous Language Agents [98.91085725608917]
我々は、言語エージェントを人工知能への有望な方向と見なしている。
Agentsはオープンソースライブラリで、これらの進歩を広く非専門的な聴衆に開放することを目的としています。
論文 参考訳(メタデータ) (2023-09-14T17:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。