MoBluRF: Motion Deblurring Neural Radiance Fields for Blurry Monocular Video
- URL: http://arxiv.org/abs/2312.13528v3
- Date: Tue, 03 Jun 2025 13:38:16 GMT
- Title: MoBluRF: Motion Deblurring Neural Radiance Fields for Blurry Monocular Video
- Authors: Minh-Quan Viet Bui, Jongmin Park, Jihyong Oh, Munchurl Kim,
- Abstract summary: MoBluRF is a framework for synthesis of sharp-temporal views in blurry monocular video.<n>In the BRI stage, we reconstruct dynamic 3D scenes and jointly initialize the base rays which are used to predict latent sharp rays.<n>In the MDD stage, we introduce a novel Incremental Latent Sharp-rays Prediction (ILSP) approach for the blurry monocular video frames.
- Score: 25.964642223641057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Radiance Fields (NeRF), initially developed for static scenes, have inspired many video novel view synthesis techniques. However, the challenge for video view synthesis arises from motion blur, a consequence of object or camera movements during exposure, which hinders the precise synthesis of sharp spatio-temporal views. In response, we propose a novel motion deblurring NeRF framework for blurry monocular video, called MoBluRF, consisting of a Base Ray Initialization (BRI) stage and a Motion Decomposition-based Deblurring (MDD) stage. In the BRI stage, we coarsely reconstruct dynamic 3D scenes and jointly initialize the base rays which are further used to predict latent sharp rays, using the inaccurate camera pose information from the given blurry frames. In the MDD stage, we introduce a novel Incremental Latent Sharp-rays Prediction (ILSP) approach for the blurry monocular video frames by decomposing the latent sharp rays into global camera motion and local object motion components. We further propose two loss functions for effective geometry regularization and decomposition of static and dynamic scene components without any mask supervision. Experiments show that MoBluRF outperforms qualitatively and quantitatively the recent state-of-the-art methods with large margins.
Related papers
- MoBGS: Motion Deblurring Dynamic 3D Gaussian Splatting for Blurry Monocular Video [26.468480933928458]
MoBGS reconstructs sharp and high-quality views from blurry monocular videos in an end-to-end manner.<n>We introduce a Blur-adaptive Latent Camera Estimation (BLCE) method for effective latent camera trajectory estimation.<n>We also propose a physically-inspired Latent Camera-inspired Exposure Estimation (LCEE) method to ensure consistent deblurring of both global camera and local object motion.
arXiv Detail & Related papers (2025-04-21T14:19:19Z) - LightMotion: A Light and Tuning-free Method for Simulating Camera Motion in Video Generation [56.64004196498026]
LightMotion is a light and tuning-free method for simulating camera motion in video generation.<n> operating in the latent space, it eliminates additional fine-tuning, inpainting, and depth estimation.
arXiv Detail & Related papers (2025-03-09T08:28:40Z) - Dynamic Neural Radiance Field From Defocused Monocular Video [15.789775912053507]
We propose D2RF, the first dynamic NeRF method designed to restore sharp novel views from defocused monocular videos.
We introduce layered Depth-of-Field (DoF) volume rendering to model the defocus blur and reconstruct a sharp NeRF supervised by defocused views.
Our method outperforms existing approaches in synthesizing all-in-focus novel views from defocus blur while maintaining spatial-temporal consistency in the scene.
arXiv Detail & Related papers (2024-07-08T03:46:56Z) - DyBluRF: Dynamic Neural Radiance Fields from Blurry Monocular Video [18.424138608823267]
We propose DyBluRF, a dynamic radiance field approach that synthesizes sharp novel views from a monocular video affected by motion blur.
To account for motion blur in input images, we simultaneously capture the camera trajectory and object Discrete Cosine Transform (DCT) trajectories within the scene.
arXiv Detail & Related papers (2024-03-15T08:48:37Z) - SMURF: Continuous Dynamics for Motion-Deblurring Radiance Fields [13.684805723485157]
The presence of motion blur, resulting from slight camera movements during extended shutter exposures, poses a significant challenge.<n>We propose sequential motion understanding radiance fields (SMURF), a novel approach that models continuous camera motion.<n>Our model is evaluated against benchmark datasets and demonstrates state-of-the-art performance both quantitatively and qualitatively.
arXiv Detail & Related papers (2024-03-12T11:32:57Z) - DRSM: efficient neural 4d decomposition for dynamic reconstruction in
stationary monocular cameras [21.07910546072467]
We present a novel framework to tackle 4D decomposition problem for dynamic scenes in monocular cameras.
Our framework utilizes decomposed static and dynamic feature planes to represent 4D scenes and emphasizes the learning of dynamic regions through dense ray casting.
arXiv Detail & Related papers (2024-02-01T16:38:51Z) - Diffusion Priors for Dynamic View Synthesis from Monocular Videos [59.42406064983643]
Dynamic novel view synthesis aims to capture the temporal evolution of visual content within videos.
We first finetune a pretrained RGB-D diffusion model on the video frames using a customization technique.
We distill the knowledge from the finetuned model to a 4D representations encompassing both dynamic and static Neural Radiance Fields.
arXiv Detail & Related papers (2024-01-10T23:26:41Z) - Decoupling Dynamic Monocular Videos for Dynamic View Synthesis [50.93409250217699]
We tackle the challenge of dynamic view synthesis from dynamic monocular videos in an unsupervised fashion.
Specifically, we decouple the motion of the dynamic objects into object motion and camera motion, respectively regularized by proposed unsupervised surface consistency and patch-based multi-view constraints.
arXiv Detail & Related papers (2023-04-04T11:25:44Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
We propose to utilize RGBD cameras to synthesize free-viewpoint videos of dynamic indoor scenes.
We generate point clouds from RGBD frames and then render them into free-viewpoint videos via a neural feature.
We introduce a simple Regional Depth-Inpainting module that adaptively inpaints missing depth values to render complete novel views.
arXiv Detail & Related papers (2022-04-22T03:17:35Z) - T\"oRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis [32.878225196378374]
We introduce a neural representation based on an image formation model for continuous-wave ToF cameras.
We show that this approach improves robustness of dynamic scene reconstruction to erroneous calibration and large motions.
arXiv Detail & Related papers (2021-09-30T17:12:59Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
We introduce Time Lens, a novel indicates equal contribution method that leverages the advantages of both synthesis-based and flow-based approaches.
We show an up to 5.21 dB improvement in terms of PSNR over state-of-the-art frame-based and event-based methods.
arXiv Detail & Related papers (2021-06-14T10:33:47Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
We present a novel framework for deblurring, interpolating and extrapolating sharp frames from a motion-blurred video in an end-to-end manner.
To ensure temporal coherence across predicted frames and address potential temporal ambiguity, we propose a simple, yet effective flow-based rule.
arXiv Detail & Related papers (2021-03-04T12:18:25Z) - Non-Rigid Neural Radiance Fields: Reconstruction and Novel View
Synthesis of a Dynamic Scene From Monocular Video [76.19076002661157]
Non-Rigid Neural Radiance Fields (NR-NeRF) is a reconstruction and novel view synthesis approach for general non-rigid dynamic scenes.
We show that even a single consumer-grade camera is sufficient to synthesize sophisticated renderings of a dynamic scene from novel virtual camera views.
arXiv Detail & Related papers (2020-12-22T18:46:12Z) - Exposure Trajectory Recovery from Motion Blur [90.75092808213371]
Motion blur in dynamic scenes is an important yet challenging research topic.
In this paper, we define exposure trajectories, which represent the motion information contained in a blurry image.
A novel motion offset estimation framework is proposed to model pixel-wise displacements of the latent sharp image.
arXiv Detail & Related papers (2020-10-06T05:23:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.