Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms
- URL: http://arxiv.org/abs/2404.11663v1
- Date: Wed, 17 Apr 2024 18:01:57 GMT
- Title: Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms
- Authors: Stefano Veroni, Markus Müller, Giacomo Giudice,
- Abstract summary: A major challenge in performing quantum error correction (QEC) is implementing reliable measurements and conditional feed-forward operations.
We propose implementations of small measurement-free QEC schemes, which are fault-tolerant to circuit-level noise.
We highlight how this alternative approach paves the way towards implementing resource-efficient measurement-free QEC on neutral-atom arrays.
- Score: 1.4767596539913115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major challenge in performing quantum error correction (QEC) is implementing reliable measurements and conditional feed-forward operations. In quantum computing platforms supporting unconditional qubit resets, or a constant supply of fresh qubits, alternative schemes which do not require measurements are possible. In such schemes, the error correction is realized via crafted coherent quantum feedback. We propose implementations of small measurement-free QEC schemes, which are fault-tolerant to circuit-level noise. These implementations are guided by several heuristics to achieve fault-tolerance: redundant syndrome information is extracted, and additional single-shot flag qubits are used. By carefully designing the circuit, the additional overhead of these measurement-free schemes is moderate compared to their conventional measurement-and-feed-forward counterparts. We highlight how this alternative approach paves the way towards implementing resource-efficient measurement-free QEC on neutral-atom arrays.
Related papers
- Measuring error rates of mid-circuit measurements [0.0]
We introduce the first benchmarking protocol that measures the rate at which mid-circuit measurements induce errors in many-qubit circuits.
We detect and eliminate previously undetected measurement-induced crosstalk in a 20-qubit trapped-ion quantum computer.
We quantify how much of that error is eliminated by dynamical decoupling.
arXiv Detail & Related papers (2024-10-22T05:22:43Z) - Robust projective measurements through measuring code-inspired
observables [8.339831319589134]
We present a scheme that implements a robust projective measurement through measuring code-inspired observables.
We can correct $t$ errors on the classical outcomes of the observables' measurement if the classical code corrects $t$ errors.
Our scheme works for any projective POVM, and hence can allow robust syndrome extraction procedures in non-stabilizer quantum error correction codes.
arXiv Detail & Related papers (2024-02-06T15:49:34Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Virtual quantum error detection [0.17999333451993949]
We propose a protocol called virtual quantum error detection (VQED)
VQED virtually allows for evaluating computation results corresponding to post-selected quantum states obtained through quantum error detection.
For some simple error models, the results obtained using VQED are robust against the noise that occurred during the operation of VQED.
arXiv Detail & Related papers (2023-02-06T08:52:50Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
Canonical discrete quantum error correction (DQEC) schemes use projective von Neumann measurements on stabilizers to discretize the error syndromes into a finite set.
Quantum error correction (QEC) based on continuous measurement, known as continuous quantum error correction (CQEC), can be executed faster than DQEC and can also be resource efficient.
We show that by constructing a measurement-based estimator (MBE) of the logical qubit to be protected, it is possible to accurately track the errors occurring on the physical qubits in real time.
arXiv Detail & Related papers (2022-03-25T09:07:18Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Error mitigation via stabilizer measurement emulation [0.0]
We introduce and demonstrate quantum measurement emulation (QQME)
QQME effectively emulates the measurement of stabilizer operators via gate application, leading to a first-order insensitivity to coherent errors.
It is particularly well-suited to discrete coherent errors that are challenging for DD to address.
arXiv Detail & Related papers (2021-02-10T22:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.