論文の概要: Variational Quantum Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2312.14151v3
- Date: Tue, 12 Nov 2024 19:00:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:08:42.964463
- Title: Variational Quantum Multi-Objective Optimization
- Title(参考訳): 変分量子多目的最適化
- Authors: Linus Ekstrom, Hao Wang, Sebastian Schmitt,
- Abstract要約: 本稿では,量子コンピュータ上での離散多目的最適化問題を解くための変分量子最適化アルゴリズムを提案する。
最大5つの目的を持つベンチマーク問題に対して提案アルゴリズムの有効性を示す。
- 参考スコア(独自算出の注目度): 5.381539115778766
- License:
- Abstract: Solving combinatorial optimization problems on near-term quantum devices has gained a lot of attraction in recent years. Currently, most works have focused on single-objective problems, whereas many real-world applications need to consider multiple, mostly conflicting objectives, such as cost and quality. We present a variational quantum optimization algorithm to solve discrete multi-objective optimization problems on quantum computers. The proposed quantum multi-objective optimization (QMOO) algorithm incorporates all cost Hamiltonians representing the classical objective functions in the quantum circuit and produces a quantum state consisting of Pareto-optimal solutions in superposition. From this state we retrieve a set of solutions and utilize the widely applied hypervolume indicator to determine its quality as an approximation to the Pareto-front. The variational parameters of the QMOO circuit are tuned by maximizing the hypervolume indicator in a quantum-classical hybrid fashion. We show the effectiveness of the proposed algorithm on several benchmark problems with up to five objectives. We investigate the influence of the classical optimizer, the circuit depth and compare to results from classical optimization algorithms. We find that the algorithm is robust to shot noise and produces good results with as low as 128 measurement shots in each iteration. These promising result open the perspective to run the algorithm on near-term quantum hardware.
- Abstract(参考訳): 近年,短期量子デバイスにおける組合せ最適化問題の解決が注目されている。
現在、ほとんどの研究は単目的の問題に焦点を合わせているが、現実のアプリケーションの多くはコストや品質など、相反する目的を複数考慮する必要がある。
本稿では,量子コンピュータ上での離散多目的最適化問題を解くための変分量子最適化アルゴリズムを提案する。
提案した量子多目的最適化(QMOO)アルゴリズムは、量子回路の古典的目的関数を表すすべてのコストハミルトニアンを内包し、重ね合わせにおけるパレート最適解からなる量子状態を生成する。
この状態から解の集合を取得し、広く応用された超体積指標を用いてパレートフロントの近似としての品質を決定する。
QMOO回路の変動パラメータは、量子古典ハイブリッド方式で超体積インジケータを最大化することにより調整される。
最大5つの目的を持つベンチマーク問題に対して提案アルゴリズムの有効性を示す。
古典最適化器の影響,回路深度について検討し,古典最適化アルゴリズムの結果と比較する。
提案アルゴリズムはノイズの撮影に頑健であり,各イテレーションで128発の計測ショットで良好な結果が得られた。
これらの有望な結果は、アルゴリズムを短期量子ハードウェア上で実行するための視点を開く。
関連論文リスト
- Performant near-term quantum combinatorial optimization [1.1999555634662633]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット量子関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
性能と資源最小化のアプローチは、潜在的な量子計算上の利点の候補として有望である、と結論付けます。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - Solving Combinatorial Optimization Problems with a Block Encoding Quantum Optimizer [0.0]
Block ENcoding Quantum (BEQO) は、ブロック符号化を用いてコスト関数を表現するハイブリッド量子ソルバである。
以上の結果から,BENQOはQAOAよりも有意に優れた性能を示し,VQEと各種のパフォーマンス指標を比較検討した。
論文 参考訳(メタデータ) (2024-04-22T10:10:29Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
我々は,多目的最適化問題を解くために,近距離量子コンピュータを応用できる手法を開発した。
量子近似最適化アルゴリズム(QAOA)に基づく実装に焦点を当てる。
論文 参考訳(メタデータ) (2023-08-16T09:22:01Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Quantum Computing Techniques for Multi-Knapsack Problems [1.0136953995598361]
我々は、異なる量子ソフトウェアとハードウェアツールを用いて、最も顕著で最先端の量子アルゴリズムを調査する。
本稿では,QAOA や VQE などのゲート型量子アルゴリズムについて考察し,その解法と実行時推定について概観する。
論文 参考訳(メタデータ) (2023-01-13T20:21:24Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
量子および量子に着想を得た最適化アルゴリズムは、学術ベンチマークや実世界の問題に適用した場合に有望な性能を示す。
しかし、QUBOソルバは単目的解法であり、複数の目的による問題の解法をより効率的にするためには、そのような多目的問題を単目的問題に変換する方法を決定する必要がある。
論文 参考訳(メタデータ) (2022-10-20T14:54:37Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。