論文の概要: On Early Detection of Hallucinations in Factual Question Answering
- arxiv url: http://arxiv.org/abs/2312.14183v3
- Date: Thu, 22 Aug 2024 07:01:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 19:45:30.459041
- Title: On Early Detection of Hallucinations in Factual Question Answering
- Title(参考訳): 具体的質問応答における幻覚の早期検出について
- Authors: Ben Snyder, Marius Moisescu, Muhammad Bilal Zafar,
- Abstract要約: 幻覚は依然として ユーザーの信頼を得るための大きな障害です
本研究では、モデル生成に関連するアーティファクトが、生成が幻覚を含むことを示すヒントを提供することができるかどうかを探索する。
以上の結果から,これらのアーティファクトの分布は,ハロゲン化世代と非ハロゲン化世代の違いが示唆された。
- 参考スコア(独自算出の注目度): 4.76359068115052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While large language models (LLMs) have taken great strides towards helping humans with a plethora of tasks, hallucinations remain a major impediment towards gaining user trust. The fluency and coherence of model generations even when hallucinating makes detection a difficult task. In this work, we explore if the artifacts associated with the model generations can provide hints that the generation will contain hallucinations. Specifically, we probe LLMs at 1) the inputs via Integrated Gradients based token attribution, 2) the outputs via the Softmax probabilities, and 3) the internal state via self-attention and fully-connected layer activations for signs of hallucinations on open-ended question answering tasks. Our results show that the distributions of these artifacts tend to differ between hallucinated and non-hallucinated generations. Building on this insight, we train binary classifiers that use these artifacts as input features to classify model generations into hallucinations and non-hallucinations. These hallucination classifiers achieve up to $0.80$ AUROC. We also show that tokens preceding a hallucination can already predict the subsequent hallucination even before it occurs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、多くのタスクで人間を助けるために大きな一歩を踏み出したが、幻覚は依然として、ユーザの信頼を得るための大きな障害である。
幻覚が検出を困難にする場合でも、モデル生成の流布とコヒーレンスは困難である。
本研究では、モデル生成に関連するアーティファクトが、生成が幻覚を含むことを示すヒントを提供することができるかどうかを探索する。
具体的には LLM を探索する。
1)統合グラディエントに基づくトークン属性による入力
2)ソフトマックス確率による出力、及び
3) 自己注意と完全連結層活性化による内部状態は, オープンエンド質問応答課題に対する幻覚の兆候である。
以上の結果から,これらのアーティファクトの分布は,ハロゲン化世代と非ハロゲン化世代の違いが示唆された。
この知見に基づいて、これらのアーティファクトを入力機能として使用するバイナリ分類器を訓練し、モデル世代を幻覚と非幻覚に分類する。
これらの幻覚分類器は最大0.80$ AUROCに達する。
また,幻覚の前にあるトークンは,それが起こる前にも,それに続く幻覚を予測できることも示している。
関連論文リスト
- ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
大規模言語モデル (LLM) は、様々な領域や広範囲のアプリケーションにまたがる、長い形式の質問応答タスクにおいて幻覚を示す。
現在の幻覚検出と緩和データセットはドメインやサイズによって制限されている。
本稿では,幻覚アノテーションデータセットを同時に,段階的にスケールアップする反復的自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T17:56:38Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
大規模な言語モデルはファクトイドの質問に答えることに成功したが、幻覚を起こす傾向がある。
正しい解答知識を持つLLMの現象を推論力学の観点から検討する。
我々の研究は、LLMの幻覚が既知の事実について、そしてより重要なのは、幻覚を正確に予測する理由を理解することに光を当てた。
論文 参考訳(メタデータ) (2024-03-29T06:48:30Z) - Mechanistic Understanding and Mitigation of Language Model Non-Factual Hallucinations [42.46721214112836]
State-of-the-art Language Model (LM) は、世界の知識と混同する非現実的な幻覚を生じることがある。
我々は、主観的関係クエリを用いた診断データセットを作成し、内部モデル表現による幻覚の追跡に解釈可能性手法を適用した。
論文 参考訳(メタデータ) (2024-03-27T00:23:03Z) - Hallucinations in Neural Automatic Speech Recognition: Identifying
Errors and Hallucinatory Models [11.492702369437785]
幻覚は、ソースの発声とは意味的に無関係であるが、それでも流動的でコヒーレントである。
単語誤り率などの一般的なメトリクスは、幻覚モデルと非幻覚モデルとを区別できないことを示す。
本研究は,幻覚を識別する枠組みを考案し,その意味的関係と基礎的真理と流布との関係を解析する。
論文 参考訳(メタデータ) (2024-01-03T06:56:56Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
機械生成データに固有の幻覚は未発見のままである。
本稿では,クロスチェックパラダイムに基づく新しい幻覚検出・除去フレームワークであるHaluciDoctorを提案する。
LLaVAに比べて44.6%の幻覚を緩和し,競争性能を維持した。
論文 参考訳(メタデータ) (2023-11-22T04:52:58Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - Understanding and Detecting Hallucinations in Neural Machine Translation
via Model Introspection [28.445196622710164]
まず, 幻覚の発生に対する相対的なトークン寄与を, ソース摂動によって生成された非幻覚出力と対照的な幻覚出力で分析することにより, 幻覚の内的モデル症状を同定する。
次に、これらの症状は、より軽量な幻覚検知器の設計において、自然幻覚の信頼性のある指標であることが示される。
論文 参考訳(メタデータ) (2023-01-18T20:43:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。