論文の概要: WaveCoder: Widespread And Versatile Enhanced Instruction Tuning with
Refined Data Generation
- arxiv url: http://arxiv.org/abs/2312.14187v2
- Date: Tue, 26 Dec 2023 13:51:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-27 20:21:41.866808
- Title: WaveCoder: Widespread And Versatile Enhanced Instruction Tuning with
Refined Data Generation
- Title(参考訳): WaveCoder: 改良されたデータ生成による広範かつVersatile拡張インストラクションチューニング
- Authors: Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, Can Xu, Yishujie
Zhao, Wenxiang Hu, Qiufeng Yin
- Abstract要約: 4つの普遍的なコード関連タスクにまたがる2万の命令インスタンスからなるデータセットであるCodeOceanを紹介する。
次に、WidespreadとVersatile拡張命令チューニングを備えた微調整コードLLMであるWavecoderを紹介する。
- 参考スコア(独自算出の注目度): 23.41247482299201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work demonstrates that, after being fine-tuned on a high-quality
instruction dataset, the resulting model can obtain impressive capabilities to
address a wide range of tasks. However, existing methods for instruction data
generation often produce duplicate data and are not controllable enough on data
quality. In this paper, we extend the generalization of instruction tuning by
classifying the instruction data to 4 code-related tasks and propose a
LLM-based Generator-Discriminator data process framework to generate diverse,
high-quality instruction data from open source code. Hence, we introduce
CodeOcean, a dataset comprising 20,000 instruction instances across 4 universal
code-related tasks,which is aimed at augmenting the effectiveness of
instruction tuning and improving the generalization ability of fine-tuned
model. Subsequently, we present WaveCoder, a fine-tuned Code LLM with
Widespread And Versatile Enhanced instruction tuning. This model is
specifically designed for enhancing instruction tuning of Code Language Models
(LLMs). Our experiments demonstrate that Wavecoder models outperform other
open-source models in terms of generalization ability across different
code-related tasks at the same level of fine-tuning scale. Moreover, Wavecoder
exhibits high efficiency in previous code generation tasks. This paper thus
offers a significant contribution to the field of instruction data generation
and fine-tuning models, providing new insights and tools for enhancing
performance in code-related tasks.
- Abstract(参考訳): 最近の研究は、高品質な命令データセットに微調整された後、様々なタスクに対処する印象的な能力が得られることを示した。
しかし、既存の命令データ生成手法はしばしば重複データを生成し、データ品質を十分に制御できない。
本稿では,命令データを4つのコード関連タスクに分類することで,命令チューニングの一般化を拡張し,オープンソースコードから多種多様な高品質な命令データを生成するLLMベースのジェネレータデータ処理フレームワークを提案する。
そこで我々は,4つの普遍的なコード関連タスクにまたがる20,000の命令インスタンスからなるデータセットであるCodeOceanを紹介した。
次に、WidespreadとVersatile拡張命令チューニングを備えた微調整コードLLMであるWaveCoderを紹介する。
このモデルは、特にコード言語モデル(llms)の命令チューニングを強化するために設計されている。
我々の実験では、Wavecoderモデルは、異なるコード関連タスクを同じレベルの微調整スケールで一般化する能力において、他のオープンソースモデルよりも優れていることを示した。
さらに、Wavecoderは、以前のコード生成タスクで高い効率を示す。
そこで本稿では,命令データ生成と微調整モデルに多大な貢献を行い,コード関連タスクのパフォーマンス向上のための新たな洞察とツールを提供する。
関連論文リスト
- AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - Performance-Aligned LLMs for Generating Fast Code [2.180216161965907]
コードLLMの出力と性能を一致させる強化学習に基づく手法を提案する。
我々は,一連のベンチマークタスクのベースモデル上でのコード生成の高速化を,微調整モデルにより改善できることを実証した。
論文 参考訳(メタデータ) (2024-04-29T16:52:38Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - DolphCoder: Echo-Locating Code Large Language Models with Diverse and
Multi-Objective Instruction Tuning [36.78560777629329]
コード生成を自己評価する多種多様な命令モデル(DolphCoder)を導入する。
多様な命令ターゲットを学習し、コード生成能力を高めるためにコード評価の目的を組み合わせる。
本モデルは,HumanEvalおよびMBPPベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-14T12:34:58Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - InstructCoder: Instruction Tuning Large Language Models for Code Editing [26.160498475809266]
ユーザインストラクションに基づいたコード編集にLLM(Large Language Models)を用いる方法について検討する。
InstructCoderは、汎用コード編集にLLMを適用するために設計された最初の命令チューニングデータセットである。
InstructCoderで微調整されたオープンソースのLLMは、コード編集の精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-10-31T10:15:35Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。