Operator dynamics in Floquet many-body systems
- URL: http://arxiv.org/abs/2312.14234v2
- Date: Wed, 18 Dec 2024 13:23:46 GMT
- Title: Operator dynamics in Floquet many-body systems
- Authors: Takato Yoshimura, Samuel J. Garratt, J. T. Chalker,
- Abstract summary: We study operator dynamics in many-body quantum systems, focusing on generic features of systems that are ergodic, spatially extended, and lack conserved densities.
We focus on Floquet quantum circuits, comparing their behaviour with what has been found previously for circuits that are random in time.
- Score: 0.0
- License:
- Abstract: We study operator dynamics in many-body quantum systems, focusing on generic features of systems that are ergodic, spatially extended, and lack conserved densities. Quantum circuits of various types provide simple models for such systems. We focus on Floquet quantum circuits, comparing their behaviour with what has been found previously for circuits that are random in time. Floquet circuits, which have discrete time-translation symmetry, represent an intermediate case between circuits that are random in time and lack any symmetry, and systems with a time-independent Hamiltonian and continuous time-translation invariance. By making this comparison, one of our aims is to identify signatures of time-translation symmetry in Floquet operator dynamics. To characterise behaviour we examine a variety of quantities in solvable models and numerically: operator autocorrelation functions; the partial spectral form factor; the out-of-time-order correlator (OTOC); and the paths in operator space that make the dominant contributions to the ensemble-averaged autocorrelation functions. Our most striking result is that ensemble-averaged autocorrelation functions show behaviour that is distinctively different in Floquet systems compared to systems in which successive time-steps are independent. Specifically, while average autocorrelation functions decay on a microscopic timescale for circuits that are random in time, in Floquet systems they have a late-time tail with a duration that grows parametrically with the size of the operator support. The existence of these tails provides a way to understand deviations of the spectral form factor from random matrix behaviour at times shorter than the Thouless time. In contrast to this feature in autocorrelation functions, we find no new aspects to the behaviour of OTOCs for Floquet models compared to random-in-time circuits.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - A Floquet analysis perspective of driven light-matter interaction models [0.0]
We analyze the harmonically driven Jaynes-Cummings and Lipkin-Meshkov-Glick models using both numerical integration of time-dependent Hamiltonians and Floquet theory.
For a separation of time-scales between the drive and intrinsic Rabi oscillations in the former model, the driving results in an effective periodic reversal of time.
Despite the chaotic nature of the driven Lipkin-Meshkov-Glick model, moderate system sizes can display qualitatively different behaviors under varying system parameters.
arXiv Detail & Related papers (2024-03-26T16:53:32Z) - Eigenstate correlations, the eigenstate thermalization hypothesis, and quantum information dynamics in chaotic many-body quantum systems [0.0]
We consider correlations between eigenstates specific to spatially extended systems and that characterise entanglement dynamics and operator spreading.
The correlations associated with scrambling of quantum information lie outside the standard framework established by the eigenstate thermalisation hypothesis (ETH)
We establish the simplest correlation function that captures these correlations and discuss features of its behaviour that are expected to be universal at long distances and low energies.
arXiv Detail & Related papers (2023-09-22T16:28:15Z) - Onset of scrambling as a dynamical transition in tunable-range quantum
circuits [0.0]
We identify a dynamical transition marking the onset of scrambling in quantum circuits with different levels of long-range connectivity.
We show that as a function of the interaction range for circuits of different structures, the tripartite mutual information exhibits a scaling collapse.
In addition to systems with conventional power-law interactions, we identify the same phenomenon in deterministic, sparse circuits.
arXiv Detail & Related papers (2023-04-19T17:37:10Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Signatures of clean phases in many-body localized quantum circuits [0.0]
Many-body phenomena far from equilibrium present challenges beyond reach by classical computational resources.
Digital quantum computers provide a possible way forward but noise limits their use in the near-term.
We propose a scheme to simulate and characterize many-body Floquetsystems.
arXiv Detail & Related papers (2021-12-07T19:00:01Z) - High-frequency expansions for time-periodic Lindblad generators [68.8204255655161]
Floquet engineering of isolated systems is often based on the concept of the effective time-independent Floquet Hamiltonian.
We show that the emerging non-Markovianity of the Floquet generator can entirely be attributed to the micromotion of the open driven system.
arXiv Detail & Related papers (2021-07-21T12:48:39Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z) - The entanglement membrane in chaotic many-body systems [0.0]
In certain analytically-tractable quantum chaotic systems, the calculation of out-of-time-order correlation functions, entanglement entropies after a quench, and other related dynamical observables, reduces to an effective theory of an entanglement membrane'' in spacetime.
We show here how to make sense of this membrane in more realistic models, which do not involve an average over random unitaries.
arXiv Detail & Related papers (2019-12-27T19:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.