AI-Lorenz: A physics-data-driven framework for black-box and gray-box
identification of chaotic systems with symbolic regression
- URL: http://arxiv.org/abs/2312.14237v1
- Date: Thu, 21 Dec 2023 18:58:41 GMT
- Title: AI-Lorenz: A physics-data-driven framework for black-box and gray-box
identification of chaotic systems with symbolic regression
- Authors: Mario De Florio, Ioannis G. Kevrekidis, George Em Karniadakis
- Abstract summary: We develop a framework that learns mathematical expressions modeling complex dynamical behaviors.
We train a small neural network to learn the dynamics of a system, its rate of change in time, and missing model terms.
This, in turn, enables us to predict the future evolution of the dynamical behavior.
- Score: 2.07180164747172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering mathematical models that characterize the observed behavior of
dynamical systems remains a major challenge, especially for systems in a
chaotic regime. The challenge is even greater when the physics underlying such
systems is not yet understood, and scientific inquiry must solely rely on
empirical data. Driven by the need to fill this gap, we develop a framework
that learns mathematical expressions modeling complex dynamical behaviors by
identifying differential equations from noisy and sparse observable data. We
train a small neural network to learn the dynamics of a system, its rate of
change in time, and missing model terms, which are used as input for a symbolic
regression algorithm to autonomously distill the explicit mathematical terms.
This, in turn, enables us to predict the future evolution of the dynamical
behavior. The performance of this framework is validated by recovering the
right-hand sides and unknown terms of certain complex, chaotic systems such as
the well-known Lorenz system, a six-dimensional hyperchaotic system, and the
non-autonomous Sprott chaotic system, and comparing them with their known
analytical expressions.
Related papers
- Deep Generative Modeling for Identification of Noisy, Non-Stationary Dynamical Systems [3.1484174280822845]
We focus on finding parsimonious ordinary differential equation (ODE) models for nonlinear, noisy, and non-autonomous dynamical systems.
Our method, dynamic SINDy, combines variational inference with SINDy (sparse identification of nonlinear dynamics) to model time-varying coefficients of sparse ODEs.
arXiv Detail & Related papers (2024-10-02T23:00:00Z) - Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
We develop a new method called Sparse Identification of Dynamical Systems from Graph-structured data (SINDyG)
SINDyG incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics.
arXiv Detail & Related papers (2024-09-02T17:51:37Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Learning Governing Equations of Unobserved States in Dynamical Systems [0.0]
We employ a hybrid neural ODE structure to learn governing equations of partially-observed dynamical systems.
We demonstrate that the method is capable of successfully learning the true underlying governing equations of unobserved states within these systems.
arXiv Detail & Related papers (2024-04-29T10:28:14Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - Inferring the Structure of Ordinary Differential Equations [12.202646598683888]
We extend the approach by (Udrescu et al., 2020) called AIFeynman to the dynamic setting to perform symbolic regression on ODE systems.
We compare this extension to state-of-the-art approaches for symbolic regression empirically on several dynamical systems for which the ground truth equations of increasing complexity are available.
arXiv Detail & Related papers (2021-07-05T07:55:05Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
We present a systematic framework that bridges large scale simulations and reduced order models to Learn the Effective Dynamics.
LED provides a novel potent modality for the accurate prediction of complex systems.
LED is applicable to systems ranging from chemistry to fluid mechanics and reduces computational effort by up to two orders of magnitude.
arXiv Detail & Related papers (2020-06-24T02:35:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.