論文の概要: Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds
- arxiv url: http://arxiv.org/abs/2312.14285v1
- Date: Thu, 21 Dec 2023 20:40:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 16:49:09.002650
- Title: Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds
- Title(参考訳): タスク依存型神経多様体を用いた生物・人工ニューラルネットワークの探索
- Authors: Michael Kuoch, Chi-Ning Chou, Nikhil Parthasarathy, Joel Dapello,
James J. DiCarlo, Haim Sompolinsky, SueYeon Chung
- Abstract要約: 本稿では,ニューラルネットワークの内部機構について,ニューラル集団幾何学のレンズを用いて検討する。
学習目的の違いが,これらのモデルの組織戦略の違いにどのように影響するかを定量的に評価する。
これらの分析は、ニューラルネットワークにおける機械的および規範的理論を神経集団幾何学を通してブリッジする強力な方向を示す。
- 参考スコア(独自算出の注目度): 12.037840490243603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, growth in our understanding of the computations performed in both
biological and artificial neural networks has largely been driven by either
low-level mechanistic studies or global normative approaches. However, concrete
methodologies for bridging the gap between these levels of abstraction remain
elusive. In this work, we investigate the internal mechanisms of neural
networks through the lens of neural population geometry, aiming to provide
understanding at an intermediate level of abstraction, as a way to bridge that
gap. Utilizing manifold capacity theory (MCT) from statistical physics and
manifold alignment analysis (MAA) from high-dimensional statistics, we probe
the underlying organization of task-dependent manifolds in deep neural networks
and macaque neural recordings. Specifically, we quantitatively characterize how
different learning objectives lead to differences in the organizational
strategies of these models and demonstrate how these geometric analyses are
connected to the decodability of task-relevant information. These analyses
present a strong direction for bridging mechanistic and normative theories in
neural networks through neural population geometry, potentially opening up many
future research avenues in both machine learning and neuroscience.
- Abstract(参考訳): 近年,生体および人工ニューラルネットワークにおける計算の理解度は,低レベルの機械工学的研究か,あるいはグローバル規範的アプローチによって大きく向上している。
しかし、これらの抽象レベル間のギャップを埋める具体的な手法はいまだ解明されていない。
本研究では,そのギャップを橋渡しする手段として,中間的な抽象レベルでの理解を提供することを目的として,神経集団幾何学のレンズを通して,ニューラルネットワークの内部機構について検討する。
高次元統計量から統計物理学および多様体アライメント解析(MAA)から多様体容量理論(MCT)を応用し、ディープニューラルネットワークおよびマカクニューラル記録におけるタスク依存多様体の基盤構造を考察する。
具体的には,これらのモデルの組織戦略の違いによる学習目標の差異を定量的に評価し,これらの幾何学的分析が課題関連情報の認知可能性とどのように結びついているかを示す。
これらの分析は、ニューラルネットワークの機械論と規範理論をニューラルネットワークの集団幾何学を通して橋渡しするための強い方向を示しており、機械学習と神経科学の両方の将来の研究の道を開く可能性がある。
関連論文リスト
- Statistical tuning of artificial neural network [0.0]
本研究では、ニューラルネットワークの理解を強化する方法を紹介し、特に1つの隠蔽層を持つモデルに焦点を当てる。
本稿では,入力ニューロンの意義を統計的に評価し,次元減少のためのアルゴリズムを提案する。
この研究は、ニューラルネットワークを解釈するための堅牢な統計フレームワークを提示することにより、説明可能な人工知能の分野を前進させる。
論文 参考訳(メタデータ) (2024-09-24T19:47:03Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
我々は,ネットワーク相互作用から生じる機能を明らかにする上で,計算モデルが重要なツールであると主張している。
ここでは、スパイキングニューロン、統合ニューロン、発火ニューロンを含むいくつかのモデルのクラスについてレビューする。
これらの研究は、人工知能アルゴリズムの今後の発展と、脳のプロセスの理解の検証に役立つことを願っている。
論文 参考訳(メタデータ) (2022-03-29T10:28:01Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Generalized Shape Metrics on Neural Representations [26.78835065137714]
表現上の相似性を定量化する計量空間の族を提供する。
我々は、正準相関解析に基づいて既存の表現類似度尺度を修正し、三角形の不等式を満たす。
解剖学的特徴とモデル性能の観点から解釈可能な神経表現の関係を同定する。
論文 参考訳(メタデータ) (2021-10-27T19:48:55Z) - Neuron-level Interpretation of Deep NLP Models: A Survey [22.035813865470956]
ディープニューラルネットワークモデルのコンポーネントを分析し、理解するために、数多くの研究がなされている。
最近の研究は、より粒度の細かいレベルでの解釈可能性に集中し、大きなモデルでニューロンとニューロンのグループを分析している。
論文 参考訳(メタデータ) (2021-08-30T11:54:21Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
ある無限大のニューラルネットワークにおいて、ニューラル・タンジェント・カーネル(NTK)理論は一般化を完全に特徴づける。
線形近似は、ニューラルネットワークの特定のタスクの学習複雑性を確実にランク付けできることを示す。
我々の研究は、将来の理論的研究を刺激する新しい深層学習現象の具体例を提供する。
論文 参考訳(メタデータ) (2021-06-12T13:05:11Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
生体および人工ニューラルネットワークの機能に関する洞察を提供する幾何学的アプローチの例を概観する。
神経集団幾何学は、生体と人工のニューラルネットワークにおける構造と機能の理解を統一する可能性がある。
論文 参考訳(メタデータ) (2021-04-14T18:10:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。