論文の概要: Logic-Scaffolding: Personalized Aspect-Instructed Recommendation
Explanation Generation using LLMs
- arxiv url: http://arxiv.org/abs/2312.14345v1
- Date: Fri, 22 Dec 2023 00:30:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 16:38:50.659491
- Title: Logic-Scaffolding: Personalized Aspect-Instructed Recommendation
Explanation Generation using LLMs
- Title(参考訳): logic-scaffolding: llmsを用いたパーソナライズされたアスペクト誘導型推奨説明生成
- Authors: Behnam Rahdari, Hao Ding, Ziwei Fan, Yifei Ma, Zhuotong Chen, Anoop
Deoras and Branislav Kveton
- Abstract要約: 我々は、アスペクトベースの説明とチェーン・オブ・思想のアイデアを組み合わせて、中間的推論ステップを通じて説明を生成するLogic-Scaffoldingというフレームワークを提案する。
本稿では,フレームワーク構築の経験を共有し,その結果を探索するためのインタラクティブなデモンストレーションを行う。
- 参考スコア(独自算出の注目度): 20.446594942586604
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The unique capabilities of Large Language Models (LLMs), such as the natural
language text generation ability, position them as strong candidates for
providing explanation for recommendations. However, despite the size of the
LLM, most existing models struggle to produce zero-shot explanations reliably.
To address this issue, we propose a framework called Logic-Scaffolding, that
combines the ideas of aspect-based explanation and chain-of-thought prompting
to generate explanations through intermediate reasoning steps. In this paper,
we share our experience in building the framework and present an interactive
demonstration for exploring our results.
- Abstract(参考訳): 自然言語テキスト生成機能のようなLarge Language Models(LLMs)のユニークな能力は、レコメンデーションの説明を提供する強力な候補としてそれらを位置づけている。
しかし、LLMのサイズにもかかわらず、既存のモデルのほとんどはゼロショットの説明を確実に作成するのに苦労している。
この問題に対処するために、アスペクトベースの説明とチェーン・オブ・思想のアイデアを組み合わせたLogic-Scaffolding(Logic-Scaffolding)というフレームワークを提案する。
本稿では,フレームワーク構築の経験を共有し,その結果を探索するためのインタラクティブなデモンストレーションを行う。
関連論文リスト
- PromptExp: Multi-granularity Prompt Explanation of Large Language Models [16.259208045898415]
PromptExpは,トークンレベルの洞察を集約することで,複数の粒度を自動生成するフレームワークである。
PromptExpは、ホワイトボックスとブラックボックスの説明の両方をサポートし、説明をより高い粒度レベルまで拡張する。
PromptExpを感情分析などのケーススタディで評価し,摂動に基づくアプローチが優れていることを示す。
論文 参考訳(メタデータ) (2024-10-16T22:25:15Z) - Thought-Like-Pro: Enhancing Reasoning of Large Language Models through Self-Driven Prolog-based Chain-of-Thought [31.964412924094656]
大規模言語モデル(LLM)は汎用アシスタントとして非常に優れた性能を示している。
多様な推論タスクにおける学習と一般化を容易にする新しい学習フレームワークTHOUGHT-LIKE-PROを導入する。
実験結果から,本手法はLLMの推論能力を大幅に向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-18T18:52:10Z) - Verification and Refinement of Natural Language Explanations through LLM-Symbolic Theorem Proving [13.485604499678262]
本稿では,Large Language Models(LLMs)とTheorem Provers(TPs)の統合による自然言語説明の検証と改善について検討する。
本稿では, TPとLPMを統合して説明文の生成と定式化を行う, Explanation-Refiner というニューロシンボリック・フレームワークを提案する。
代わりに、TPは説明の論理的妥当性を公式に保証し、その後の改善のためのフィードバックを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-02T15:20:01Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
大規模言語モデル(LLM)は汎用性があるが、深い信頼性のある推論を必要とするタスクに悩まされることが多い。
本稿では、知識を効果的に固定し、閉ループ推論プロセスを用いるLLMを作成するための厳密な設計のフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-18T18:10:02Z) - RecExplainer: Aligning Large Language Models for Explaining Recommendation Models [50.74181089742969]
大規模言語モデル (LLM) は、理解、推論、指導において顕著な知性を示した。
本稿では, ブラックボックスレコメンデータモデルを説明するために, LLM を代理モデルとして利用することについて検討する。
効果的なアライメントを容易にするために,行動アライメント,意図アライメント,ハイブリッドアライメントという3つの手法を導入する。
論文 参考訳(メタデータ) (2023-11-18T03:05:43Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
大規模言語モデル(LLM)は、様々な自然言語理解タスクにおいて顕著な能力を示している。
我々は,LLMを用いたテキスト内学習を支援するための説明型ソフトアンサンブルフレームワークであるEASEを提案する。
論文 参考訳(メタデータ) (2023-11-13T06:13:38Z) - In-Context Explainers: Harnessing LLMs for Explaining Black Box Models [28.396104334980492]
大規模言語モデル(LLM)は、機械翻訳、常識推論、言語理解といった複雑なタスクにおいて、例外的な機能を示している。
このような多様なタスクにおけるLLMの適応性の主要な理由の1つは、インコンテキスト学習(ICL)能力である。
本稿では,LLMのICL機能を利用して,他の予測モデルによる予測を説明する新しい3つの手法,In-Context Explainersを提案する。
論文 参考訳(メタデータ) (2023-10-09T15:31:03Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - Towards LLM-guided Causal Explainability for Black-box Text Classifiers [16.36602400590088]
我々は,近年の大規模言語モデルにおける命令追従とテキスト理解機能を活用して,因果的説明可能性を高めることを目指している。
提案する3ステップパイプラインは,既製のLCMを用いて,入力テキスト中の潜時的・未観測な特徴を識別する。
我々は,複数のNLPテキスト分類データセットを用いたパイプライン実験を行い,興味深い,有望な結果を示した。
論文 参考訳(メタデータ) (2023-09-23T11:22:28Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Complementary Explanations for Effective In-Context Learning [77.83124315634386]
大規模言語モデル (LLM) は、説明のインプロンプトから学習する際、顕著な能力を示した。
この研究は、文脈内学習に説明が使用されるメカニズムをよりよく理解することを目的としている。
論文 参考訳(メタデータ) (2022-11-25T04:40:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。