Concatenating Binomial Codes with the Planar Code
- URL: http://arxiv.org/abs/2312.14390v2
- Date: Wed, 29 May 2024 00:27:52 GMT
- Title: Concatenating Binomial Codes with the Planar Code
- Authors: Juliette Soule, Andrew C. Doherty, Arne L. Grimsmo,
- Abstract summary: Rotation bosonic codes are attractive encodings for qubits in superconducting qubit experiments.
We investigate concatenating these codes with the planar code in a measurement-based scheme for fault-tolerant quantum computation.
We find that it is necessary to implement adaptive phase measurements, maximum likelihood quantum state inference, and weighted minimum weight decoding to obtain good performance for a planar code using binomial code qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rotation symmetric bosonic codes are an attractive encoding for qubits into oscillator degrees of freedom, particularly in superconducting qubit experiments. While these codes can tolerate considerable loss and dephasing, they will need to be combined with higher level codes to achieve large-scale devices. We investigate concatenating these codes with the planar code in a measurement-based scheme for fault-tolerant quantum computation. We focus on binomial codes as the base level encoding, and estimate break-even points for such encodings under loss for various types of measurement protocol. These codes are more resistant to photon loss errors, but require both higher mean photon numbers and higher phase resolution for gate operations and measurements. We find that it is necessary to implement adaptive phase measurements, maximum likelihood quantum state inference, and weighted minimum weight decoding to obtain good performance for a planar code using binomial code qubits.
Related papers
- Wire Codes [0.0]
We introduce a recipe to transform any quantum stabilizer code into a subsystem code with related code parameters that has weight and degree three.
We call the subsystem codes produced by our recipe "wire codes"
Our results constitute a general method to construct low-overhead subsystem codes on general graphs.
arXiv Detail & Related papers (2024-10-14T06:27:09Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
arXiv Detail & Related papers (2024-05-07T06:47:12Z) - Progressive-Proximity Bit-Flipping for Decoding Surface Codes [8.971989179518214]
Topological quantum codes, such as toric and surface codes, are excellent candidates for hardware implementation.
Existing decoders often fall short of meeting requirements such as having low computational complexity.
We propose a novel bit-flipping (BF) decoder tailored for toric and surface codes.
arXiv Detail & Related papers (2024-02-24T22:38:05Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Fault-Tolerant Quantum Memory using Low-Depth Random Circuit Codes [0.24578723416255752]
Low-depth random circuit codes possess many desirable properties for quantum error correction.
We design a fault-tolerant distillation protocol for preparing encoded states of one-dimensional random circuit codes.
We show through numerical simulations that our protocol can correct erasure errors up to an error rate of $2%$.
arXiv Detail & Related papers (2023-11-29T19:00:00Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Measurement-free fault-tolerant logical zero-state encoding of the
distance-three nine-qubit surface code in a one-dimensional qubit array [0.0]
We propose an efficient encoding method for the distance-three, nine-qubit surface code and show its fault tolerance.
We experimentally demonstrate the logical zero-state encoding of the surface code using a superconducting quantum computer on the cloud.
We numerically show that fault-tolerant encoding of this large code can be achieved by appropriate error detection.
arXiv Detail & Related papers (2023-03-30T08:13:56Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.