Wire Codes
- URL: http://arxiv.org/abs/2410.10194v1
- Date: Mon, 14 Oct 2024 06:27:09 GMT
- Title: Wire Codes
- Authors: Nouédyn Baspin, Dominic Williamson,
- Abstract summary: We introduce a recipe to transform any quantum stabilizer code into a subsystem code with related code parameters that has weight and degree three.
We call the subsystem codes produced by our recipe "wire codes"
Our results constitute a general method to construct low-overhead subsystem codes on general graphs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum information is fragile and must be protected by a quantum error-correcting code for large-scale practical applications. Recently, highly efficient quantum codes have been discovered which require a high degree of spatial connectivity. This raises the question of how to realize these codes with minimal overhead under physical hardware connectivity constraints. Here, we introduce a general recipe to transform any quantum stabilizer code into a subsystem code with related code parameters that has weight and degree three, and local interactions on a given graph. We call the subsystem codes produced by our recipe "wire codes". These codes can be adapted to have a local implementation on any graph that supports a low-density embedding of an input tanner graph, with an overhead that depends on the embedding. Applying our results to hypercubic lattices leads to a construction of local subsystem codes with optimal scaling code parameters in any fixed spatial dimension. Similarly, applying our results to families of expanding graphs leads to local codes on these graphs with code parameters that depend on the degree of expansion. Our results constitute a general method to construct low-overhead subsystem codes on general graphs, which can be applied to adapt highly efficient quantum error correction procedures to hardware with restricted connectivity.
Related papers
- List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Flag Proxy Networks: Tackling the Architectural, Scheduling, and Decoding Obstacles of Quantum LDPC codes [1.870400753080051]
In this paper, we consider two under-studied families of QLDPC codes: hyperbolic surface codes and hyperbolic color codes.
degree-4 FPNs of the hyperbolic surface and color codes are respectively $2.9times$ and $5.5times$ more space-efficient than the $d = 5$ planar surface code.
The hyperbolic codes also have error rates comparable to their planar counterparts.
arXiv Detail & Related papers (2024-09-22T01:08:58Z) - Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
arXiv Detail & Related papers (2024-06-09T12:08:56Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Concatenating Binomial Codes with the Planar Code [0.0]
Rotation bosonic codes are attractive encodings for qubits in superconducting qubit experiments.
We investigate concatenating these codes with the planar code in a measurement-based scheme for fault-tolerant quantum computation.
We find that it is necessary to implement adaptive phase measurements, maximum likelihood quantum state inference, and weighted minimum weight decoding to obtain good performance for a planar code using binomial code qubits.
arXiv Detail & Related papers (2023-12-22T02:34:56Z) - Improved rate-distance trade-offs for quantum codes with restricted
connectivity [34.95121779484252]
We study how the connectivity graph associated with a quantum code constrains the code parameters.
We establish a tighter dimension-distance trade-off as a function of the size of separators in the connectivity graph.
arXiv Detail & Related papers (2023-07-06T20:38:34Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - KO codes: Inventing Nonlinear Encoding and Decoding for Reliable
Wireless Communication via Deep-learning [76.5589486928387]
Landmark codes underpin reliable physical layer communication, e.g., Reed-Muller, BCH, Convolution, Turbo, LDPC and Polar codes.
In this paper, we construct KO codes, a computationaly efficient family of deep-learning driven (encoder, decoder) pairs.
KO codes beat state-of-the-art Reed-Muller and Polar codes, under the low-complexity successive cancellation decoding.
arXiv Detail & Related papers (2021-08-29T21:08:30Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
We show that trellis decoders have strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed.
The modified decoder works for any stabilizer code $S$ and separates into two parts: a one-time, offline which builds a compact, graphical representation of the normalizer of the code, $Sperp$, and a quick, parallel, online computation using the Viterbi algorithm.
arXiv Detail & Related papers (2021-06-15T16:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.