論文の概要: Navigating the Concurrency Landscape: A Survey of Race Condition Vulnerability Detectors
- arxiv url: http://arxiv.org/abs/2312.14479v1
- Date: Fri, 22 Dec 2023 07:05:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 11:28:18.998803
- Title: Navigating the Concurrency Landscape: A Survey of Race Condition Vulnerability Detectors
- Title(参考訳): コンカレンシーランドスケープのナビゲーション:レースコンディショナビリティ検出装置の調査
- Authors: Aishwarya Upadhyay, Vijay Laxmi, Smita Naval,
- Abstract要約: 本稿では,レースコンディションバグ検出の領域に焦点をあてる。
我々はこれらの検出器を,それらが採用する多様な手法に基づいて系統的に分類する。
レースコンディションの脆弱性の検出におけるファジリング技術の適用について,光を当てた。
- 参考スコア(独自算出の注目度): 0.12289361708127873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As technology continues to advance and we usher in the era of Industry 5.0, there has been a profound paradigm shift in operating systems, file systems, web, and network applications. The conventional utilization of multiprocessing and multicore systems has made concurrent programming increasingly pervasive. However, this transformation has brought about a new set of issues known as concurrency bugs, which, due to their wide prevalence in concurrent programs, have led to severe failures and potential security exploits. Over the past two decades, numerous researchers have dedicated their efforts to unveiling, detecting, mitigating, and preventing these bugs, with the last decade witnessing a surge in research within this domain. Among the spectrum of concurrency bugs, data races or race condition vulnerabilities stand out as the most prevalent, accounting for a staggering 80\% of all concurrency bugs. This survey paper is focused on the realm of race condition bug detectors. We systematically categorize these detectors based on the diverse methodologies they employ. Additionally, we delve into the techniques and algorithms associated with race detection, tracing the evolution of this field over time. Furthermore, we shed light on the application of fuzzing techniques in the detection of race condition vulnerabilities. By reviewing these detectors and their static analyses, we draw conclusions and outline potential future research directions, including enhancing accuracy, performance, applicability, and comprehensiveness in race condition vulnerability detection.
- Abstract(参考訳): 技術が進歩し続け、産業5.0の時代には、オペレーティングシステム、ファイルシステム、Web、ネットワークアプリケーションに大きなパラダイムシフトがありました。
従来のマルチプロセッシングとマルチコアシステムの利用により、並列プログラミングはますます広まりつつある。
しかし、このトランスフォーメーションは、並行プログラムが広く普及しているため、重大な障害と潜在的なセキュリティエクスプロイトに繋がった、並行バグとして知られる新しい一連の問題を引き起こした。
過去20年間、多くの研究者がこれらのバグの公表、発見、緩和、予防に力を注いできた。
並行性バグのスペクトルの中で、データレースや競合状態の脆弱性が最も多く、すべての並行性バグの80%が停滞している。
本研究は,レースコンディションバグ検出の領域に焦点をあてる。
我々はこれらの検出器を,それらが採用する多様な手法に基づいて系統的に分類する。
さらに、レース検出に関連する技術やアルゴリズムを探索し、時間とともにこのフィールドの進化をトレースします。
さらに,レースコンディションの脆弱性の検出にファジング技術を適用した。
これらの検出器とその静的解析をレビューすることにより、競合状態の脆弱性検出における精度、性能、適用性、包括性などの今後の研究の方向性を概説する。
関連論文リスト
- Online Model-based Anomaly Detection in Multivariate Time Series: Taxonomy, Survey, Research Challenges and Future Directions [0.017476232824732776]
時系列異常検出は、エンジニアリングプロセスにおいて重要な役割を果たす。
この調査では、オンラインとオフラインの区別とトレーニングと推論を行う新しい分類法を紹介した。
文献で使用される最も一般的なデータセットと評価指標、および詳細な分析を示す。
論文 参考訳(メタデータ) (2024-08-07T13:01:10Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
この調査は、コードインテリジェンスの発展に関する体系的なレビューを示す。
50以上の代表モデルとその変種、20以上のタスクのカテゴリ、および680以上の関連する広範な研究をカバーしている。
発達軌道の考察に基づいて、コードインテリジェンスとより広範なマシンインテリジェンスとの間の新たな相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-21T08:54:56Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning [58.107474025048866]
蓄積とは、以前に獲得した知識の喪失または劣化を指す。
フォッテッティングは、深層学習における様々な研究領域でよく見られる現象である。
論文 参考訳(メタデータ) (2023-07-16T16:27:58Z) - Condition monitoring and anomaly detection in cyber-physical systems [0.483420384410068]
本稿では,サイバー物理システムにおけるロバストで費用対効果の高い異常検出のための最近の機械学習手法の比較分析を行う。
監督された症例では,98%の精度でほぼ完全である。
対照的に、教師なし症例のベストケースの精度は63%であった。
論文 参考訳(メタデータ) (2023-01-22T00:58:01Z) - Towards an Awareness of Time Series Anomaly Detection Models'
Adversarial Vulnerability [21.98595908296989]
本研究では,センサデータに小さな対向摂動のみを加えることで,最先端の異常検出手法の性能を著しく劣化させることを実証した。
いくつかのパブリックデータセットとプライベートデータセットに対して、予測エラー、異常、分類スコアなど、さまざまなスコアを使用する。
敵攻撃に対する異常検出システムの脆弱性を初めて実証した。
論文 参考訳(メタデータ) (2022-08-24T01:55:50Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。