論文の概要: Traffic Reconstruction and Analysis of Natural Driving Behaviors at
Unsignalized Intersections
- arxiv url: http://arxiv.org/abs/2312.14561v1
- Date: Fri, 22 Dec 2023 09:38:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 15:26:29.543088
- Title: Traffic Reconstruction and Analysis of Natural Driving Behaviors at
Unsignalized Intersections
- Title(参考訳): 不特定区間における自然運転行動の交通再建と解析
- Authors: Supriya Sarker, Bibek Poudel, Michael Villarreal, Weizi Li
- Abstract要約: この研究は、TNのメンフィスにある様々な無署名の交差点で、その日の異なる時間に交通を記録していた。
ビデオデータを手動でラベル付けして特定の変数をキャプチャした後,SUMOシミュレーション環境におけるトラフィックシナリオを再構築した。
これらのシミュレーションから得られた出力データは、車両移動の時間空間図、走行時間頻度分布、ボトルネック点を特定するための速度配置プロットなど、包括的な分析を提供する。
- 参考スコア(独自算出の注目度): 1.7273380623090846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the intricacies of traffic behavior at unsignalized
intersections through the lens of a novel dataset, combining manual video data
labeling and advanced traffic simulation in SUMO. This research involved
recording traffic at various unsignalized intersections in Memphis, TN, during
different times of the day. After manually labeling video data to capture
specific variables, we reconstructed traffic scenarios in the SUMO simulation
environment. The output data from these simulations offered a comprehensive
analysis, including time-space diagrams for vehicle movement, travel time
frequency distributions, and speed-position plots to identify bottleneck
points. This approach enhances our understanding of traffic dynamics, providing
crucial insights for effective traffic management and infrastructure
improvements.
- Abstract(参考訳): 本稿では,SUMOにおける手動ビデオデータラベリングと高度な交通シミュレーションを組み合わせた,新しいデータセットのレンズを通して,信号のない交差点における交通行動の複雑さについて検討する。
この研究は、TNのメンフィスにある様々な無署名の交差点で、その日の異なる時間に交通を記録していた。
ビデオデータを手動でラベル付けして特定の変数をキャプチャした後,SUMOシミュレーション環境におけるトラフィックシナリオを再構築した。
これらのシミュレーションからの出力データは、車両移動の時間空間図、走行時間周波数分布、ボトルネック点を特定するための速度配置プロットを含む包括的な分析を提供した。
このアプローチは、トラフィックダイナミクスの理解を深め、効果的なトラフィック管理とインフラ改善のための重要な洞察を提供する。
関連論文リスト
- Cross-domain Few-shot In-context Learning for Enhancing Traffic Sign Recognition [49.20086587208214]
交通信号認識の強化を目的としたMLLMに基づくドメイン間数ショットインコンテキスト学習手法を提案する。
記述テキストを使用することで、テンプレートと実際の交通標識のドメイン間差を低減することができる。
提案手法は,大規模交通標識画像やラベルを必要とせず,単純かつ均一なテキスト表示のみを必要とする。
論文 参考訳(メタデータ) (2024-07-08T10:51:03Z) - Deep Multi-View Channel-Wise Spatio-Temporal Network for Traffic Flow Prediction [18.008631008649658]
underlineMulti-underlineView underlineChannel-wise underlineSpatio-underlineTemporal underlineNetwork (MVC-STNet)
我々は,マルチチャネル交通流予測の新たな課題について検討し,深いアンダーラインMulti-underlineViewアンダーラインChannel-wiseアンダーラインTempを提案する。
論文 参考訳(メタデータ) (2024-04-23T13:39:04Z) - Graph Attention Network for Lane-Wise and Topology-Invariant Intersection Traffic Simulation [8.600701437207725]
交差点に対する2つの効率的かつ正確な「デジタルツイン」モデルを提案する。
これらのデジタルツインは、交差点内の交通の時間的、空間的、文脈的な側面を捉えている。
本研究の応用は、車線再構成、運転行動分析、交差点の安全性と効率向上に関する情報決定の促進まで及んでいる。
論文 参考訳(メタデータ) (2024-04-11T03:02:06Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph [10.675666104503119]
本稿では,詳細な深部交通推論をedIと呼ぶ。
道路間の関係をモデル化するために,交通信号に基づくきめ細かい交通グラフを構築した。
私たちは、都市レベルのきめ細かい交通予測を最初に実施しました。
論文 参考訳(メタデータ) (2023-06-19T14:03:42Z) - Traffic Scene Parsing through the TSP6K Dataset [109.69836680564616]
高品質なピクセルレベルのアノテーションとインスタンスレベルのアノテーションを備えた,TSP6Kと呼ばれる特殊なトラフィック監視データセットを導入する。
データセットは、既存の運転シーンの何倍ものトラフィック参加者を持つ、より混雑した交通シーンをキャプチャする。
交通シーンの異なるセマンティック領域の詳細を復元するシーン解析のためのディテールリフィニングデコーダを提案する。
論文 参考訳(メタデータ) (2023-03-06T02:05:14Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Learning Traffic Speed Dynamics from Visualizations [3.0969191504482243]
時空の可視化からマクロ交通速度のダイナミクスを学習する深層学習法を提案する。
既存の推定手法と比較して,より詳細な推定解決が可能となる。
次世代シミュレーションプログラム(NGSIM)とドイツ高速道路(HighD)のデータセットから得られたデータを用いて,高速道路区間の高分解能交通速度場を推定した。
論文 参考訳(メタデータ) (2021-05-04T11:17:43Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Traffic Data Imputation using Deep Convolutional Neural Networks [2.7647400328727256]
我々は、よく訓練されたニューラルネットワークが、時間空間図から交通速度のダイナミクスを学習できることを示します。
提案手法は, 車両の侵入プローブレベルを5%以下に抑えることで, マクロな交通速度を再現できることを示す。
論文 参考訳(メタデータ) (2020-01-21T12:52:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。