論文の概要: Holistic analysis on the sustainability of Federated Learning across AI product lifecycle
- arxiv url: http://arxiv.org/abs/2312.14628v2
- Date: Tue, 01 Apr 2025 06:58:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-02 14:13:25.245103
- Title: Holistic analysis on the sustainability of Federated Learning across AI product lifecycle
- Title(参考訳): AIプロダクトライフサイクルにおけるフェデレーション学習の持続可能性に関する全体分析
- Authors: Hongliu Cao,
- Abstract要約: フェデレートラーニング(FL)というAIの分散的アプローチ
Cross-Silo FLは、クライアントが生データではなくモデル更新を共有できるようにするため、プライバシが向上する。
モデルトレーニングのエネルギー消費とコストはクロスサイロ・フェデレート・ラーニングと同等である。
フェデレートラーニング。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In light of emerging legal requirements and policies focused on privacy protection, there is a growing trend of companies across various industries adopting Federated Learning (FL). This decentralized approach involves multiple clients or silos, collaboratively training a global model under the coordination of a central server while utilizing their private local data. Unlike traditional methods that necessitate data sharing and transmission, Cross-Silo FL allows clients to share model updates rather than raw data, thereby enhancing privacy. Despite its growing adoption, the carbon impact associated with Cross-Silo FL remains poorly understood due to the limited research in this area. This study seeks to bridge this gap by evaluating the sustainability of Cross-Silo FL throughout the entire AI product lifecycle, extending the analysis beyond the model training phase alone. We systematically compare this decentralized method with traditional centralized approaches and present a robust quantitative framework for assessing the costs and CO2 emissions in real-world Cross-Silo FL environments. Our findings indicate that the energy consumption and costs of model training are comparable between Cross-Silo Federated Learning and Centralized Learning. However, the additional data transfer and storage requirements inherent in Centralized Learning can result in significant, often overlooked CO2 emissions. Moreover, we introduce an innovative data and application management system that integrates Cross-Silo FL and analytics, aiming at improving the sustainability and economic efficiency of IT enterprises.
- Abstract(参考訳): プライバシ保護に重点を置く新たな法的要件とポリシーを考えると、さまざまな業界でフェデレートラーニング(Federated Learning, FL)を採用する企業が増えている。
この分散アプローチでは、複数のクライアントやサイロが関与し、プライベートなローカルデータを活用しながら、中央サーバの調整の下でグローバルモデルを協調的にトレーニングする。
データ共有と送信を必要とする従来の方法とは異なり、Cross-Silo FLでは、クライアントは生データではなくモデル更新を共有できるため、プライバシが向上する。
普及しているにもかかわらず、クロスシロFLに関連する炭素の影響は、この分野の研究が限られているため、いまだに理解されていない。
この研究は、AI製品ライフサイクル全体を通してクロスサイロFLの持続可能性を評価し、モデルトレーニングフェーズのみを超えて分析を拡張することで、このギャップを埋めることを目指している。
我々は,この分散化手法を従来の中央集権的手法と体系的に比較し,実世界のクロスサイロFL環境におけるコストとCO2排出量を評価するための堅牢な定量的枠組みを提案する。
その結果, モデル学習のエネルギー消費とコストは, クロスサイロ・フェデレートラーニングと集中型ラーニングに匹敵することがわかった。
しかし、集中学習に固有の追加のデータ転送とストレージ要件は、しばしば見過ごされるCO2排出量を著しく引き起こす可能性がある。
さらに、クロスサイロFLと分析を統合した革新的なデータ・アプリケーション管理システムを導入し、IT企業の持続可能性と経済効率の向上を目指す。
関連論文リスト
- FedReMa: Improving Personalized Federated Learning via Leveraging the Most Relevant Clients [13.98392319567057]
Federated Learning (FL) は分散機械学習のパラダイムであり、分散計算と周期モデル合成によってグローバルに堅牢なモデルを実現する。
広く採用されているにもかかわらず、既存のFLとPFLの作業は、クラス不均衡の問題に包括的に対処していない。
本稿では,適応型クライアント間コラーニング手法を用いて,クラス不均衡に対処できる効率的なPFLアルゴリズムであるFedReMaを提案する。
論文 参考訳(メタデータ) (2024-11-04T05:44:28Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
産業用IoT(Industrial Internet of Things)における各種エンティティからの十分なトレーニングデータの収集と集中化は難しい。
フェデレートラーニング(FL)は、クライアント間で協調的なグローバルモデルトレーニングを可能にするソリューションを提供する。
我々は,Adversarial Federated Consensus Learning (AFedCL) という新しいFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T03:59:32Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - Knowledge-Aware Federated Active Learning with Non-IID Data [75.98707107158175]
本稿では,アノテーション予算に制限のあるグローバルモデルを効率的に学習するための,連合型アクティブラーニングパラダイムを提案する。
フェデレートされたアクティブラーニングが直面する主な課題は、サーバ上のグローバルモデルのアクティブサンプリング目標と、ローカルクライアントのアクティブサンプリング目標とのミスマッチである。
本稿では,KSAS (Knowledge-Aware Federated Active Learning) とKCFU (Knowledge-Compensatory Federated Update) を組み合わせた,知識対応型アクティブ・ラーニング(KAFAL)を提案する。
論文 参考訳(メタデータ) (2022-11-24T13:08:43Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Adapt to Adaptation: Learning Personalization for Cross-Silo Federated
Learning [6.0088002781256185]
従来のフェデレーション学習は、分散データによるクライアントのフェデレーションのためのグローバルモデルをトレーニングすることを目的としている。
非IIDデータセット間の分散シフトは、データヘテロジニティとしても知られ、この1つのグローバルモデルに適合するソリューションにしばしば挑戦する。
我々は、各クライアントが他のクライアントのモデルからどれだけの恩恵を受けることができるかを適応的に学習するパーソナライズされたクロスサイロFLフレームワークであるAPPLEを提案する。
論文 参考訳(メタデータ) (2021-10-15T22:23:14Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Adaptive Federated Dropout: Improving Communication Efficiency and
Generalization for Federated Learning [6.982736900950362]
フェデレートラーニング(Federated Learning)として知られる、革命的な分散機械学習設定により、異なる地理的場所に位置する複数のクライアントが、機械学習モデルの共同学習が可能になる。
クライアントとサーバ間のコミュニケーションは、連合学習の収束時間における主要なボトルネックと考えられている。
本稿では,適応型フェデレート・ドロップアウト(AFD)を提案する。
論文 参考訳(メタデータ) (2020-11-08T18:41:44Z) - Federated Residual Learning [53.77128418049985]
クライアントはローカルモデルを個別に訓練し、サーバ側で共有するモデルと共同で予測を行う。
この新しいフェデレートされた学習フレームワークを使用することで、統合トレーニングが提供するパフォーマンス上のメリットをすべて享受しながら、中央共有モデルの複雑さを最小限にすることができる。
論文 参考訳(メタデータ) (2020-03-28T19:55:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。