論文の概要: When Swarm Learning meets energy series data: A decentralized collaborative learning design based on blockchain
- arxiv url: http://arxiv.org/abs/2406.04743v1
- Date: Fri, 7 Jun 2024 08:42:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:59:58.587519
- Title: When Swarm Learning meets energy series data: A decentralized collaborative learning design based on blockchain
- Title(参考訳): Swarm Learningがエネルギシリーズのデータと出会う:ブロックチェーンに基づく分散型協調学習設計
- Authors: Lei Xu, Yulong Chen, Yuntian Chen, Longfeng Nie, Xuetao Wei, Liang Xue, Dongxiao Zhang,
- Abstract要約: 機械学習モデルは、将来のエネルギー生産または消費を予測する機能を提供する。
しかし、特定のエネルギーセクター内の法と政策の制約は、様々な情報源のデータを利用する際に技術的ハードルをもたらす。
本稿では,集中型サーバをブロックチェーンベースの分散ネットワークに置き換えるSwarm Learningスキームを提案する。
- 参考スコア(独自算出の注目度): 10.099134773737939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models offer the capability to forecast future energy production or consumption and infer essential unknown variables from existing data. However, legal and policy constraints within specific energy sectors render the data sensitive, presenting technical hurdles in utilizing data from diverse sources. Therefore, we propose adopting a Swarm Learning (SL) scheme, which replaces the centralized server with a blockchain-based distributed network to address the security and privacy issues inherent in Federated Learning (FL)'s centralized architecture. Within this distributed Collaborative Learning framework, each participating organization governs nodes for inter-organizational communication. Devices from various organizations utilize smart contracts for parameter uploading and retrieval. Consensus mechanism ensures distributed consistency throughout the learning process, guarantees the transparent trustworthiness and immutability of parameters on-chain. The efficacy of the proposed framework is substantiated across three real-world energy series modeling scenarios with superior performance compared to Local Learning approaches, simultaneously emphasizing enhanced data security and privacy over Centralized Learning and FL method. Notably, as the number of data volume and the count of local epochs increases within a threshold, there is an improvement in model performance accompanied by a reduction in the variance of performance errors. Consequently, this leads to an increased stability and reliability in the outcomes produced by the model.
- Abstract(参考訳): 機械学習モデルは、将来のエネルギー生産または消費を予測し、既存のデータから重要な未知の変数を推測する機能を提供する。
しかし、特定のエネルギーセクター内の法的な制約と政策的な制約はデータを敏感にし、様々な情報源のデータを利用するための技術的ハードルを提示する。
そこで我々は,フェデレートラーニング(FL)の集中型アーキテクチャに固有のセキュリティとプライバシの問題に対処するため,集中型サーバをブロックチェーンベースの分散ネットワークに置き換えるSwarm Learning(SL)方式を提案する。
この分散協調学習フレームワークでは、各組織が組織間通信のためのノードを管理している。
さまざまな組織のデバイスは、パラメータのアップロードと検索にスマートコントラクトを使用している。
コンセンサス機構は学習プロセス全体にわたって分散一貫性を確保し、透過的な信頼性とパラメータの不変性を保証する。
提案手法の有効性は3つの実世界のエネルギシリーズモデリングシナリオで実証され,ローカルラーニング手法よりも優れた性能を示し,同時に集中学習法やFL法よりもデータセキュリティとプライバシを重視した。
特に,データボリューム数や局所エポック数の増加に伴い,性能誤差の分散の低減に伴うモデル性能の向上が期待できる。
その結果、モデルが生み出す結果の安定性と信頼性が向上する。
関連論文リスト
- SCALE: Self-regulated Clustered federAted LEarning in a Homogeneous Environment [4.925906256430176]
フェデレートラーニング(FL)は、ユーザのプライバシを維持しながら、分散機械学習を実現するための変革的なアプローチとして登場した。
本稿では,エッジサーバへの依存を排除し,これらの制約を克服する新しいFL手法を提案する。
論文 参考訳(メタデータ) (2024-07-25T20:42:16Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth
and Data Heterogeneity [14.313847382199059]
Fed-QSSL (Federated Quantization-based self-supervised learning scheme) はFLシステムの不均一性に対処するために設計された。
Fed-QSSLは、デ量子化、重み付けされたアグリゲーション、再量子化をデプロイし、最終的に、各クライアントのデバイスのデータ分散と特定のインフラストラクチャの両方にパーソナライズされたモデルを作成する。
論文 参考訳(メタデータ) (2023-12-20T19:11:19Z) - Enhancing Scalability and Reliability in Semi-Decentralized Federated
Learning With Blockchain: Trust Penalization and Asynchronous Functionality [0.0]
本論文は, 信頼金化機構を通じて参加ノードの信頼性を高めることに焦点を当てている。
提案システムは、データのプライバシーを損なうことなく、協調的な機械学習のための公正でセキュアで透明な環境を構築することを目的としている。
論文 参考訳(メタデータ) (2023-10-30T06:05:50Z) - BRFL: A Blockchain-based Byzantine-Robust Federated Learning Model [8.19957400564017]
分散ノードにデータを格納し、モデルパラメータのみを共有するフェデレーション学習は、この問題に対処するために大きな注目を集めている。
悪質なローカルモデルが集約中のグローバルモデルのパフォーマンスを損なうという、ビザンティン攻撃問題(英語版)によるフェデレートラーニング(英語版)において、課題が生じる。
本稿では、フェデレートラーニングとブロックチェーン技術を組み合わせたByzantine-Robust Federated Learning(BRLF)モデルの統合を提案する。
論文 参考訳(メタデータ) (2023-10-20T10:21:50Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Aggregation Service for Federated Learning: An Efficient, Secure, and
More Resilient Realization [22.61730495802799]
本稿では,学習過程を通じて個々のモデル更新を効率よく保護するシステム設計を提案する。
本システムは,実用性能で,ベースラインに匹敵する精度を実現している。
論文 参考訳(メタデータ) (2022-02-04T05:03:46Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。